Книги

Как мы видим? Нейробиология зрительного восприятия

22
18
20
22
24
26
28
30
ДЕЛ ЭЙМС: ИЗОЛИРОВАННАЯ СЕТЧАТКА ВИДИТ

Многие Нобелевские премии по биологии были присуждены, по крайней мере частично, за технические инновации. Но на первые полосы попадали далеко не все прорывные технические изобретения и их авторы. Одним из таких новаторов был Дел Эймс, блестящий ученый, щедрой души человек и мой главный учитель.

Эдельберт (Дел) Эймс III родился в Новой Англии в семье, где было много выдающихся личностей, все их заслуги невозможно перечислить. Первый Эдельберт Эймс, дед Дела, был генералом Армии Союза. Сегодня его помнят как просвещенного губернатора штата Миссисипи в период реконструкции Юга после Гражданской войны. Отец Дела, профессор Дартмутского университета, прославился открытием искажающего влияния окружающей среды на восприятие объектов. Возможно, вы слышали о «комнате Эймса» или даже посещали такой аттракцион на ярмарке – это помещение особой конструкции, создающей ложную перспективу, из-за чего внешнему наблюдателю кажется, будто перемещающийся по комнате человек превращается то в карлика, то в гиганта. (Отец Дела также был талантливым скульптором-любителем. Вылепленную им благородную голову индейского вождя – символ банка Shawmut – в те времена можно было увидеть в центре многих городов Новой Англии.)

Дел, высокий худощавый янки, сложением напоминавший Теодора Рузвельта (на внучке которого Дел женился), был заядлым туристом, охотником и рыболовом, смельчаком. Он дожил до 97 лет, но и за год до смерти его часто видели бегущим на лыжах. В студенческие годы Дел входил в лыжную команду Гарвардского университета и затем всю жизнь участвовал в лыжных гонках. В молодости он вместе с университетскими друзьями построил планер. Их безмоторный летательный аппарат разгонялся за счет буксировки автомобилем и после первоначального набора высоты держался в воздухе благодаря восходящим воздушным потокам. Никто из них не умел управлять таким судном, поэтому Дел совершил первый полет и научил остальных. Спустя годы Дел помог своему сыну Дэвиду построить копию того первого планера из легкого деревянного каркаса и перетяжек. Я присутствовал при его запуске. Дэвид бежал по склону холма возле их дома в Конкорде и, когда планер достаточно разогнался, вспрыгнул в него и занял лежачее положение пилота. Машина поднялась на высоту около четырех метров, после чего из-за ошибки пилотирования потеряла скорость – крылья треснули, и планер рухнул на землю.

Вторая мировая война прервала учебу Эймса в Гарвардском университете, где он успел проучиться три года и откуда его в срочном порядке направили в медицинский институт. Впоследствии он даже с некоторой гордостью хвастался тем, что у него нет университетского образования. В Гарварде ему отказались выдать диплом, ограничившись вручением справки о «посещении» лекций. Военные обратили внимание на успехи Дела в изучении медицины, явный научный талант и любовь к холоду и командировали его в Фэрбенкс на Аляске, чтобы заняться исследованиями специфики ведения боевых действий в зимних условиях. Там он пережил один из самых морозных дней за всю историю наблюдений, когда температура воздуха опустилась до –64 ℃. Среди задач, которые военные поставили перед Делом, был поиск наиболее эффективных способов отогревания летчиков и моряков, подвергшихся сильному переохлаждению (как известно, тем же самым занимался печально знаменитый нацистский врач Йозеф Менгеле в концлагерях).

Группа Эймса сделала ряд удивительных открытий. Эксперимент начинался с того, что добровольца погружали в ванну с ледяной водой. Когда температура его тела падала на несколько градусов, испытуемого доставали из воды и согревали. При снижении температуры внутренней части тела до 35 ℃ у человека наступает переохлаждение; понижение еще на несколько градусов ведет к сильной дрожи и болезненному сокращению кровеносных сосудов в руках и ногах, а дальнейшее ее падение грозит смертью. Исследователям нужно было сравнить различные способы согревания жертв гипотермии.

Оказалось, вспоминал Эймс, что некоторые традиционные способы согревания имели серьезные недостатки. Например, если поместить переохладившегося человека в теплую комнату и дать ему стакан бренди, его температура не поднимется, а упадет еще больше. Причина этого парадокса кроется в обычной физике. Даже в очень теплой комнате температура воздуха обычно составляет около 26–27 ℃. При этом температура даже сильно замерзшего человека близка к 35 ℃. Алкоголь расширяет поверхностные кровеносные сосуды, что вызывает приток крови к поверхности кожи, которая соприкасается с более прохладным воздухом (мало кто разогревает комнату до температуры выше 35 ℃). Другими словами, алкоголь стимулирует теплообмен, в результате чего тело замерзшего человека отдает драгоценное тепло окружающей среде, что только усугубляет ситуацию. (Лучший способ – поместить человека под горячий душ.)

После войны Эймс завершил медицинское образование в Колумбийском университете и вернулся в Гарвард, чтобы попробовать себя на исследовательском поприще. Он не сразу занялся нейробиологией, а устроился стажером в лабораторию доктора Бэрда Хейстингса, заведующего кафедрой биологической химии в Гарвардской медицинской школе. Независимый мыслитель, Эймс решил найти способ изолировать нервную ткань для ее изучения. Проще говоря, он хотел вывести мозг за пределы черепной коробки, чтобы его легче было исследовать. Идея была радикальной, и доктор Хейстингс уверенно заявил, что ничего не выйдет, однако Эймс проанализировал метаболизм нейронов и не нашел в нем ничего такого, что помешало бы ему осуществить свою затею.

В те времена в нейробиологии доминировали клинические неврологи, которые были убеждены, что нейроны мозга – чрезвычайно нежны и уязвимы и могут нормально функционировать только в своей привычной среде внутри надежно защищающей их черепной коробки. У медиков были весомые основания так считать. Они знали, что нарушение питания мозга даже на несколько минут ведет к его необратимым повреждениям. При остановке сердца потеря сознания происходит через считаные секунды, и, если не восстановить кровообращение в течение следующих нескольких минут, мозг пациента (и, следовательно, сам пациент) умирает или впадает в вегетативное состояние.

Эймс заинтересовался метаболизмом мозга еще на Аляске. Нейроны действительно требуют очень много энергии – в этом они превосходят практически любую другую ткань организма. Мозг весом всего один – два килограмма потребляет около 20 % общих энергетических ресурсов нашего тела. Вот почему кровоснабжение мозга очень интенсивно; питание его тканей осуществляется через чрезвычайно разветвленную сеть капилляров. Питательные вещества от капилляров к нейронам и продукты клеточной жизнедеятельности в обратном направлении переносятся посредством пассивного транспорта (диффузии). Но диффузия хорошо работает только на очень коротких расстояниях, поэтому мозг опутан частой сетью тончайших капилляров. Студентов-медиков учат тому, что мозговой нейрон может находиться от капилляра на расстоянии не дальше 0,2 мм. Чтобы вам легче было представить: плотность капиллярной сети больше, чем у плетения ткани в обычной простыне.

Эймс задался вопросом, есть ли в нашей центральной нервной системе такое место, где нейроны можно изолировать от окружающих неневральных клеток. В конце концов он нашел такое место – сетчатка. Неспециалисты редко знают о том, что центральная нервная система состоит не только из головного мозга, но и спинного мозга и сетчатки. Эти три структуры имеют сходное эмбриологическое происхождение и образованы из одинаковых видов нейронов и вспомогательных клеток. Все они защищены гематоэнцефалическим барьером – комплексным механизмом, который сохраняет внутри них особую химическую среду, обособленную от остального организма. Большинство нейронов сетчатки и спинного мозга являются полноценными нейронами. Взятые в отдельности нейроны сетчатки (кроме палочек и колбочек) даже для большинства нейробиологов неотличимы от нейронов, находящихся в других частях центральной нервной системы.

Но сетчатка сталкивается с одной проблемой, которой нет у других структур центральной нервной системы: ей нужно воспринимать свет. Если сетчатку пронизать обычной сетью артерий, вен и капилляров, эти сосуды и несомая ими кровь будут преграждать путь свету. В результате мы бы видели мир словно через плотную москитную сетку на окне. Однако эволюция нашла удачный способ решить эту проблему. Сетчатка представляет собой тонкий пласт клеток толщиной обычно не больше 0,3 мм. Благодаря этому бо́льшая его часть находится в пределах досягаемости для диффузии с одной стороны. Сетчатку пронизывает несколько кровеносных сосудов, которые обеспечивают питание самых дальних ее слоев, но основным источником питания служит густая сеть кровеносных сосудов, расположенная снаружи сетчатки в виде сосудистой оболочки.

Эймсу играло на руку и то, что у большинства млекопитающих сетчатка неплотно связана с этим нижележащим слоем и довольно легко от него отделяется. Вот почему отслойка сетчатки – распространенный риск при некоторых заболеваниях или травмах, таких как попадание в глаз хоккейной шайбы или теннисного мяча. Но сама отслаивающаяся сетчатка при этом остается неповрежденной, поэтому, если вовремя вернуть ее на место посредством хирургического вмешательства, пострадавшая сетчатка (и зрение) вскоре восстанавливается.

Эймс разработал формулу искусственного раствора, имитирующего спинномозговую жидкость, которая омывает центральную нервную систему. В ходе своих экспериментов ученый быстро вынимал глаз у находившегося под наркозом животного (его потом усыпляли, пока действие наркоза не прошло), разрезал глаз и осторожно отделял сетчатку, оставляя ее висеть на зрительном нерве. Потом нерв перерезался. Так Эймс получал изолированную сетчатку – тончайшую, почти прозрачную полусферу, бледно-розовую в неподвижном состоянии и становившуюся серебристой при облучении светом. Плавающая в чашке Петри, она была похожа на кусочек намокшей салфетки Kleenex размером с чайную ложку.

Почти по всем параметрам изолированная сетчатка является живой. Она продолжает потреблять кислород и глюкозу, синтезирует новые белки, выделяет продукты обмена веществ. Нейроны сетчатки сохраняют электрическую активность. В течение следующих нескольких лет Эймс и его коллеги доказали, что изолированная сетчатка ведет себя именно так, как предположительно должна вести себя нервная ткань головного мозга. И, что самое главное, она реагирует на свет точно так же, как сетчатка в глазу живого существа.

В последующие годы метод Дела переняли все нейробиологи, и к 1980 г. почти никто не исследовал сетчатку непосредственно на животных. Более того, оказалось, что многие другие образцы нервной ткани тоже могут быть изолированы и существовать вне организма при правильной инкубации. Разработанный Делом специальный инкубационный раствор, известный как «транспортная среда Эймса», теперь продается компанией Sigma-Aldrich, ведущим поставщиком лабораторных химикатов[12]. По моим весьма приблизительным подсчетам, за последние 40 лет они продали около 300 000 л этого раствора, что достаточно для того, чтобы спустить на воду фрегат ВМС США. (Эймс никогда не требовал роялти или каких-либо других выплат за свое изобретение. Впоследствии, когда ему была нужна для экспериментов «транспортная среда Эймса», он за деньги покупал ее у Sigma-Aldrich.)

ЗАВЕСА ПРИОТКРЫВАЕТСЯ

Меня заинтересовала технология Эймса, и по окончании магистратуры я добился, чтобы меня приняли научным сотрудником в его гарвардскую лабораторию. Эксперименты, которые я проводил под руководством Эймса, могли бы служить отличным базовым введением к курсу биологии восприятия. В них не было ничего новомодного, ничего «нобелевского» – просто реальная наука, небольшой, но важный шаг вперед, который открывал путь к новому пониманию.

Мы с Эймсом хотели узнать, как работает нейронная сеть сетчатки – проникнуть внутрь сетчатки и понять, каким образом происходит передача сигналов от внутренних нейронов к ганглионарным клеткам, которые в итоге формируют зрительное сообщение для головного мозга. Чтобы узнать это, мы собирались воздействовать на синапсы нейронов с помощью различных веществ, нацеленных на конкретные типы синапсов. Проще говоря, мы хотели оказать точно выверенное химическое воздействие на систему и посмотреть, как она отреагирует.

Первым шагом на пути к нашей цели было узнать, какие именно нейромедиаторы и каким образом используются в сетчатке. Нейроны сетчатки связаны десятками видов синапсов, и мы хотели детально изучить работу этой системы – простимулировать отдельные синапсы и посмотреть, как меняется выходной сигнал сетчатки. Например, существуют ли конкретные нейромедиаторы, отвечающие за передачу только on-ответов или только off-ответов? Какие нейромедиаторы вовлечены в способность сетчатки воспринимать движущиеся стимулы? Не приведет ли это к открытию механизма, который кажется магическим и посредством которого небольшая группа нейронов в сетчатке определяет направление движения стимула?

Сама схема эксперимента была довольно простой. Глядя через микроскоп, я осторожно опускал микроэлектрод, пока его кончик не касался поверхности сетчатки. Если мне везло, ганглионарная клетка издавала легкий хлопок (мы выявляем активность нейронов, усиливая слабый сигнал, улавливаемый микроэлектродом). Если нет, я осторожно перемещал микроэлектрод влево или вправо, внимательно слушая, когда появится отчетливая последовательность электрических разрядов. Когда клетка была надежно изолирована, я включал примитивный оптический стимулятор с воздушным охлаждением, который излучал на сетчатку точечное пятно света. Во время вспышек света я прислушивался к тому, как реагирует клетка. Изучив параметры ее ответа, я вводил через боковой отвод тестовые реагенты и смотрел, изменилась ли реакция. Все это делалось почти в полной темноте, при тусклом красном освещении подобном свету ночника, чтобы минимизировать непреднамеренное раздражение сетчатки. Звуковым фоном служило шипение воздуха в вентиляции и потрескивание фоновых разрядов – нейронного шума.

И да, забыл сказать, что воздух в комнате был нагрет до температуры тела кролика (37,2 ℃). Когда Дел разрабатывал оригинальный эксперимент, он не знал, какие условия необходимы, чтобы ткань оставалась живой вне организма. Ему показалось логичным предположить, что одно из ключевых требований – держать изолированную сетчатку в таких же температурных условиях, которые существуют в кроличьем глазу. Но сетчатка инкубировалась в проточном растворе, в который вводилась струя кислорода. Так как же гарантировать поддержание стабильной температуры в инкубационной чашке? Всегда дотошный, Дел нашел простое решение: создать среду, в которой всё – сетчатка, растворы, воздух – имело температуру тела кролика, 37,2 ℃. По его заказу в лаборатории построили небольшую «теплую комнату», которая нагревалась внешними обогревателями до любой необходимой температуры. Зимой, когда воздух был сухим, находиться 12 часов подряд в крошечной комнатушке, нагретой до 37,2 ℃, не составляло труда. Куда сложнее нам приходилось летом, когда воздух насыщался влагой. (Когда я создал собственную лабораторию, чуть ли первым делом задался целью найти другой способ контролировать температуру.)