Книги

Мир физики и физика мира. Простые законы мироздания

22
18
20
22
24
26
28
30

К сожалению, даже сегодня слишком много физиков этого не понимают; это еще один аргумент в пользу того, что философия – не просто переливание из пустого в порожнее, она способствует продвижению науки. Если бы вам пришлось проводить опрос физиков, занимающихся квантовой механикой (по крайней мере тех, кто к ней неравнодушен), вы бы обнаружили, что в большинстве своем они все еще придерживаются принципов Копенгагенской школы. Однако все чаще ученые отмечают в таком подходе отрицание значимости физики и готовы поддерживать иные взгляды, например такие экзотические идеи, как теория множества вселенных, скрытых переменных, динамического коллапса, последовательных историй, квантового байесианства или реляционной квантовой механики – и это еще не полный список. Никто не знает, какой из этих способов описания действительности верен в квантовом масштабе. Все они работают, все до сих пор давали одни и те же прогнозы относительно результатов экспериментов и наблюдений[22],и все они имеют одну и ту же математическую основу. Иногда сторонники этих теорий относятся к ним как к идеологическим догмам, почти как к религии, и в этом случае наука замирает на мертвой точке.

И все же в попытках понять квантовый мир намечается хоть и медленный, но прогресс. Экспериментальные методики становятся все изощреннее, а некоторые теории отбрасываются вообще. Есть надежда, что однажды мы познаем, как Природа колдует над своим квантовым волшебством. Если вам это кажется разумным, то многие физики с вами не согласятся. Позитивисты утверждают, что наука есть не более чем инструмент для прогнозирования исхода экспериментов, а тем, кто хочет знать, что именно квантовая механика сообщает нам о действительности, и разглядеть смысл в соответствующем математическом аппарате, лучше заниматься не физикой, а философией. По правде говоря, не все сторонники позитивистского копенгагенского подхода пренебрегают попытками взглянуть на проблему поглубже. В начале 2000-х годов появилась новая антиреалистическая интерпретация под названием «квантовое байесианство» (или «кубизм»), сторонники которого считают реальность совершенно субъективным, иногда даже личным опытом. Критики приравнивают эту интерпретацию к солипсизму.

Выбор интерпретации квантовой механики не должен сводиться к вопросу о философских предпочтениях. Тот факт, что все они дают одинаковые прогнозы о состоянии мира, не означает, что все они эквивалентны друг другу или что можно выбрать любую, повинуясь собственному капризу. Объяснение определенного аспекта действительности посредством физики – двухступенчатый процесс. Во-первых, мы должны найти соответствующую математическую теорию, которая может оказаться верной или неверной. Допустим, мы считаем ее верной – как, например, эйнштейновское уравнение поля в теории общей относительности или уравнение Шредингера в квантовой механике. Во-вторых, нам понадобится метод интерпретации или объяснения того, что значит эта математика. Без этого нам не удастся объединить символы и уравнения с физической Вселенной, как бы они нам ни нравились с эстетической точки зрения. И эта правильная интерпретация столь же важна, как правильная математическая теория.

Разные интерпретации квантовой механики рисуют весьма различные картины реальности: либо существуют параллельные вселенные (теория множества вселенных), либо нет; либо существует нелокальное квантовое поле (теория скрытых переменных), либо нет. Природе наплевать на наши мелкие свары по поводу квантовой механики – она существует независимо от наших представлений о ней. Если у нас есть проблема с согласованием взглядов по поводу поведения квантового мира, то это наша проблема. Так считал Эйнштейн. Он тоже был реалистом. Он полагал, что физика должна описывать, каков мир на самом деле, и, если существует больше одного описания, которое соответствует математике квантовой механики, нам нельзя успокаиваться на достигнутом. Похоже, что в этом отношении я попал в хорошую компанию.

Запутанность, измерение и декогерентность

Но даже Эйнштейн иногда ошибался. Одно из самых интересных и необъяснимых предположений, сделанных на основании квантовой механики, – идея запутанности. В квантовом мире две и более частицы могут мгновенно создать связь в пространстве, бросая тем самым настоящий вызов логике. Терминологически это явление известно как нелокальность, и ее можно образно объяснить так: то, что происходит «здесь», может мгновенно повлиять на то, что происходит «там». Мы говорим, что две частицы описываются одним и тем же «квантовым состоянием», одной волновой функцией. Эйнштейн всегда ощущал некоторую неловкость по поводу нелокальности и запутанности, называя их «подозрительным воздействием на расстоянии», и отказывался признать, что какое-либо взаимодействие между субатомными частицами способно перемещаться быстрее скорости света, поскольку это противоречило бы специальной теории относительности. Однако такая взаимосвязь может, в принципе, возникать даже между частицами на противоположных концах Вселенной. Пионеры квантовой науки доказали, что явление запутанности естественным образом вытекает из их формул, а эксперименты 1970–1980-х годов подтвердили, что Эйнштейн был не прав: теперь мы эмпирически установили, что квантовые частицы могут образовывать мгновенные связи, находясь далеко друг от друга в пространстве. На самом деле наша Вселенная нелокальна.

Сегодня многие ученые, работающие в таких областях, как квантовая оптика, квантовая информационная теория и даже квантовая гравитация, видят глубокую связь между запутанностью и главной проблемой квантовой механики – проведением измерений. Сначала мы должны признать, что квантовая система – скажем, атом – на самом деле является частью окружающего ее мира, так что рассматривать ее отдельно, строго говоря, будет неверно. Мы должны учесть в наших вычислениях воздействие окружающей среды. Такая открытая квантовая система ставит перед нами гораздо более сложную проблему, но в тоже время она дает нам возможность продвинуться вперед в понимании того, что значит проводить измерения в квантовой системе за пределами того, что Нильс Бор назвал «необратимым актом», имея в виду, что квантовая «размытость» кристаллизуется в реальность при проведении измерений.

По сути, теперь ясно, что среда, окружающая квантовую систему, такую как атом, может сама провести все «измерения». Для этого не требуется осознанное наблюдение. Мы можем представить себе, как атом еще более «запутывается» в своем окружении, так что его квантовая природа «вытекает» в среду как тепло, выделяющееся из нагретого тела. Это вытекание и есть эфемерная квантовая размытость, известная как декогерентность, и в данный момент она активно исследуется. Чем сильнее взаимосвязь между квантовой системой и ее средой, тем быстрее рассеивается ее квантовое поведение.

Объясняет ли этот процесс полностью проблему измерения или нет – вопрос, который все еще горячо дебатируется в определенных кругах. Попытка решить сложную проблему измерений в квантовой механике (или провести границу между мельчайшим квантовым миром и масштабным классическим миром) была впервые осуществлена в середине 1930-х годов знаменитым Эрвином Шредингером при помощи мысленного эксперимента. Несмотря на то что Шредингер был одним из пионеров и отцов-основателей в этой области знаний, он неоднократно высказывал сомнения насчет смысла квантовой механики. Шредингер спрашивал, что бы случилось, если бы мы поместили кошку в ящик с радиоактивным веществом и смертельным ядом. Пока наш ящик закрыт, мы не можем сказать, была ли испущена радиоактивная частица, которая активирует механизм выделения яда, который убьет кошку. Все, что мы можем сделать, – это высчитать вероятность двух возможных исходов, когда мы откроем ящик: либо частица уже испущена и кошка мертва, либо нет и кошка жива. Однако согласно законам квантовой механики, пока ящик закрыт, субатомные частицы будут повиноваться законам квантового мира; следует признать принцип квантовой суперпозиции, и тогда наша частица одновременно уже испущена и еще нет.

В закрытом ящике судьба кошки зависит от квантового события. Шредингер утверждал, что, поскольку сама кошка состоит из атомов, пусть даже их триллионы, каждый из них – некая квантовая сущность, которая тоже должна существовать в квантовой суперпозиции: одновременно в состоянии живом и мертвом. Однако определенный исход мы сможем увидеть, только если откроем ящик. То есть кошка либо жива, либо мертва, а вовсе не находится в состоянии полной неопределенности.

Разумный способ решения этой проблемы в том, чтобы предположить, что такие квантовые суперпозиции докогерируют в окружающую среду и поэтому не сохраняются надолго в отношении таких макроскопических объектов, как кошка, которая никогда не бывает одновременно в двух состояниях даже до того, как мы открываем ящик. На самом деле хотя изолированный радиоактивный атом, пока мы его не увидели, следует считать находящимся в суперпозиции, одновременно в распавшемся и нераспавшемся состоянии, он находится в сложной среде, состоящей из воздуха, счетчика Гейгера и кошки, с которыми он мгновенно вступает в состояние запутанности, так что опция двух одновременных состояний не сохраняется.

Так что, проблема решена? И правда ли, что два альтернативных состояния кошки отражают не более чем наше неведение относительно ее судьбы, пока мы не откроем ящик? Если это не так, то нам все равно остается неизвестно, что за физический процесс происходит, когда мы открываем ящик. Что случилось с опцией, которой мы не наблюдаем? Сторонники интерпретации квантовой механики как множества вселенных считают, что этому есть простое и четкое объяснение. Они утверждают, что теперь у нас есть две параллельные реальности, в каждой из которых реализуется своя опция. То, что мы обнаружим, открыв наш ящик, отражает ту реальность, в которой находимся мы сами.

Другие физики, которые не готовы принять идею бесконечно увеличивающегося количества реальностей, выдвинули целый ряд альтернативных теорий, которые все равно требуют существования объективной реальности в отсутствии измерений, причем каждая теория содержит какой-то причудливый, скрытый аспект реальности. Например, иной способ интерпретации квантовой теории был предложен в 1920-х годах французским физиком Луи де Бройлем, а затем в течение нескольких десятилетий подробно разрабатывался Дэвидом Бомом. Согласно этой теории, квантовый мир состоит из частиц, передвижение которых определяется волновой функцией. Их свойства скрыты от нас (они называются скрытыми переменными), но они описывают квантовый мир без той расплывчатости, которая характерна для копенгагенской картины бытия. Вместо того чтобы считать, что сам электрон проявляет свойства волны и частицы в зависимости от того, как мы проводим измерения, предполагается, что существуют и волны, и частицы, но заметить мы можем только частицы. Небольшая, но очень увлеченная группа физиков во всем мире считает, что у теории Бройля – Бома большие перспективы, однако это очень мало исследованная опция в ряду возможных квантовых интерпретаций.

Как бы меня ни увлекал этот разговор, придется здесь прерваться, поскольку другие книги гораздо глубже освещают эту тему, а мои возможности ограниченны. В любом случае для меня проблема квантовой механики еще не решена, но пока мы на этом остановимся.

До сих пор я в основном уделял внимание базовым понятиям, материи и энергии, пространству-времени, в котором они существуют, и квантовой природе реальности, которая лежит в основе всего этого. И я еще не обращался к некоторым столь же фундаментальным концептам физики, которые начинают проявляться, когда большое количество частиц сходится воедино, образуя сложные системы. Поэтому давайте пока оставим мир мельчайших частиц и уменьшим масштаб, чтобы посмотреть, что происходит, когда возникают сложные системы, и исследуем такие глубинные понятия, как порядок, хаос, энтропия и стрела времени.

Глава 6. Термодинамика и стрела времени

По мере удаления от квантового мира с его произвольностью, размытостью и неопределенностью в фокусе опять оказывается уже знакомый нам мир Ньютона. Дымящаяся чашечка кофе на нашем столе, мячик, только что ударившийся о землю в нашем дворе, или пролетающий над нами реактивный самолет – все это, если задуматься, состоит из материи и энергии, которые образуют системы большей или меньшей степени сложности. Так что, если мы хотим понять физику окружающего нас мира, нам придется понять, как взаимодействует и ведет себя множество частиц в совокупности. Область физики, которая помогает нам понимать поведение большого количества взаимодействующих тел, называется статистической механикой.

Вспомним, что в главе 4 мы познакомились с понятиями материи и энергии и узнали, что энергия может трансформироваться из одной формы в другую, тогда как общее количество энергии в системе остается неизменным. Энергия прыгающего мяча постоянно превращается из потенциальной, когда он находится на некоторой высоте над землей, в кинетическую энергию движения. Таким образом, на максимальной высоте вся энергия является потенциальной, а непосредственно перед тем, как мяч коснется земли и движется с наибольшей скоростью, потенциальная энергия превращается в кинетическую. Все это кажется достаточно очевидным, но мы ведь знаем, что мячик не будет прыгать вечно: он теряет энергию в виде тепла, производимого за счет трения о воздух и ударов о землю. Превращение кинетической энергии в тепло имеет коренные отличия от преобразования потенциальной энергии в кинетическую: это процесс односторонний. Мы страшно бы изумились, если б на наших глазах без посторонней помощи мячик возобновил свое движение.

Как это получается? Почему процесс односторонний?

Мячик перестает прыгать потому же, почему тепло от чашки кофе всегда уходит в более холодную среду и никогда не возвращается обратно, почему сахар и сливки в кофе никогда не восстанавливаются из смеси до своего начального состояния. Добро пожаловать в область термодинамики, которая является третьим столпом физики (наряду с теорией общей относительности и квантовой механикой). Если статистическая механика описывает, как взаимодействуют и ведут себя большие количества частиц в одной системе, термодинамика описывает тепло и энергию в системе и то, как они изменяются во времени. Как станет ясно, эти области исследования во многом взаимосвязаны, так что физики часто изучают их в совокупности. Мы тоже рассмотрим их вместе.