Книги

Мир физики и физика мира. Простые законы мироздания

22
18
20
22
24
26
28
30

Итак, мы пока не можем утверждать, что получили истинную теорию всего; мы также еще не понимаем, как свести воедино квантовую механику и общую теорию относительности. Скорее, у нас есть теории, претендующие на эту роль, которые имеют определенные перспективы, но все же оставляют много вопросов открытыми.

Некоторые блестящие физики посвятили всю свою жизнь разработке одной из таких теорий, однако, как и в случае с различными интерпретациями квантовой механики, здесь все сильно замешано на социологии науки, и мнение о том, какая теория наиболее перспективна, на самом деле зависит от того, с кем ты разговариваешь. Итак, в общих чертах в красном углу ринга – теория струн, которая на данный момент представляется нашей самой удачной попыткой унификации всех четырех сил природы, хотя после более чем 30-летних исследований она все еще является спекулятивной. Действительно, можно сказать, что это еще даже не настоящая научная теория, поскольку она не позволила сделать никаких экспериментально подтверждаемых предположений. А в синем углу ринга – теория петлевой квантовой гравитации, которая кажется наиболее логичным способом квантизации пространства-времени, однако не помогает объединить гравитацию с остальными силами. Мы так и не знаем, какой из двух подходов ближе к истине, следует ли их объединить или, может, поискать какую-нибудь совершенно новую теорию?

И это прямо подводит нас к вопросу о современных проблемах и противоречиях в фундаментальной физике, а также о том, какие открытия могут нас ожидать в ближайшем будущем.

Рис. 4. Унификация – упрощенная схема, иллюстрирующая, как концепты физики (теории, явления, силы) с годами сближались друг с другом. Заметьте, что, хотя хронология соответствует действительности (в направлении слева направо), она не слишком точна. Например, специальная теория относительности расположена прямо под ньютоновской теорией притяжения, хотя последняя появилась на 100 лет раньше

Глава 8. Будущее физики

Замечательные успехи физики в XX веке могут навести на мысль, что нам осталось только разгладить отдельные складки, усовершенствовать экспериментальные методы, нанести завершающие штрихи на наши математические теории – все, что можно, мы уже узнали и надо просто расставить точки над i. Возможно, у вас создалось впечатление, что нам не нужен второй Ньютон или Эйнштейн (или Максвелл, Резерфорд, Бор, Дирак, Фейнман и Хокинг), который мог бы произвести революцию в физике, потому что мы уже находимся на пороге открытия теории всего, которая объяснит все, что происходит во Вселенной.

К сожалению или к счастью, если вы физик-теоретик, только начинающий свою карьеру и ищущий серьезную тему, которой стоило бы заняться, – это совсем не так. Я даже сказал бы, что сегодня мы еще дальше от конца книги под названием «Физика», чем нам это казалось 20–30 лет назад. Мы считаем, что с помощью Стандартной модели можно объяснить все составные части материи и энергии, но теперь мы совершенно уверены, что все, что мы обнаружили, составляет лишь 5 % Вселенной. Остальные 95 %, известные как темная материя или темная энергия, в определенной степени остаются тайной. Мы уверены, что она есть, но не знаем, из чего она состоит и как ее существование согласуется с действующими теориями. В этой главе, наряду с другими важнейшими проблемами физики, я расскажу об исследовании этой тайны.

Темная материя

Скорость вращения галактик, движение целых галактик внутри скопления галактик, а также структура Вселенной в целом – все указывает на то, что существенная ее часть состоит из почти невидимого вида материи. Мы называем ее темной не потому, что она скрыта за другой, видимой материей, и даже не потому, что она на самом деле темная, а потому, что, насколько мы понимаем, она не поддается воздействию электромагнитной силы и, таким образом, не излучает света и не взаимодействует с обычной материей, если не считать гравитацию[28],так что, возможно, ее лучше бы называть невидимой материей. Задумайтесь на минутку, почему, когда вы ударяете рукой по столу, рука не проходит насквозь. Можно подумать, что это само собой разумеется – конечно, причина в том, что и ваша рука, и стол сделаны из твердого материала. Однако не забывайте, что на уровне атомов материя в основном представляет собой пустое пространство – диффузные электронные облака, окружающие крошечное ядро, – так что у атомов, из которых состоит ваша рука, должно быть достаточно возможностей, чтобы проникнуть в промежутки между атомами стола. Этого не происходит из-за электромагнитной силы, действующей между электронами в атомах вашей руки и электронами в атомах стола, которая вызывает отталкивание и создает сопротивление, воспринимаемое нами как твердость. Однако, если бы ваша рука состояла из темной материи, она бы спокойно прошла сквозь стол, как если бы его не было – сила гравитации между ними слишком мала, чтобы оказать сколь-нибудь заметный эффект.

Уже давно известно, что галактики обладают большей массой, чем можно получить, если взвесить всю обычную материю, которая содержится в них в виде звезд, планет, а также межзвездной пыли и газа. В какой-то момент считалось, что темная материя состоит из давно умерших звезд и черных дыр – объектов, содержащих обычную материю, которые, однако, не излучают света. Но сегодня большая часть данных свидетельствует о том, что невидимая материя, скорее всего, представляет собой новый вид материи из новых видов частиц, которые нам еще предстоит открыть.

Первоначально высказывалась мысль, что темная материя объясняет перемещение целых галактических скоплений. Дальнейшие данные были получены на основании того, как движутся звезды внутри спиральных галактик – они кружатся, подобно нерастворившимся кофейным гранулам на поверхности кружки с растворимым кофе, если его помешать ложкой. Большая часть звезд – и, соответственно, большая часть массы в галактике – сосредоточена вокруг ее ядра, что должно заставить звезды у внешней границы галактики двигаться медленнее. Наблюдаемая на самом деле более высокая, чем ожидалось, скорость этих «внешних» звезд заставляет предположить, что здесь задействовано еще какое-то невидимое вещество, которое выходит за пределы видимой материи и создает дополнительный гравитационный «клей», не дающий внешним звездам разлетаться в разные стороны.

Существование темной материи также подтверждается тем, как она «заворачивает» вокруг себя пространство. Это явление проявляется в том, каким образом искривляется траектория света, пока он идет от далеких объектов к нашим телескопам. Степень такого искривления можно объяснить только дополнительным гравитационным искривлением пространства, вызванным темной материей галактик, через которые свет проходит по пути к Земле.

Так что же мы знаем о темной материи кроме того, что она вызывает это необходимое дополнительное притяжение? Разве его нельзя объяснить чем-то менее экзотичным, чем новая форма энергии? Действительно, многие астрофизики полагают, что темная материя не нужна вовсе, но тогда придется допустить, что свойства гравитационной силы на больших расстояниях способны изменяться. Одно из таких предположений, известное под названием MOND (Modified Newtonian dynamics, модифицированная ньютоновская динамика), с первого взгляда может показаться вполне привлекательным. Однако, хотя MOND или другие связанные с ней гипотезы, модифицирующие общую теорию относительности, способны объяснить некоторые из наблюдаемых эффектов, многое они объяснить не могут. Ни одна из этих моделей не соответствует данным, касающимся скоплений галактик, в частности данным о столкновении галактик (знаменитый Пулевой кластер, или кластер Пуля), о детальной структуре космической микроволновой фоновой радиации или о недавно открытых карликовых галактиках.

Существование темной материи также представляется необходимым для объяснения структуры первоначальной Вселенной. В отличие от обычной материи, которая сохраняла высокий уровень энергии благодаря своему взаимодействию с электромагнитным полем, темная материя по мере расширения Вселенной остывала гораздо быстрее и поэтому быстрее начала образовывать гравитационные сгустки. Одним из самых серьезных достижений астрофизики за последние годы стало полученное с помощью компьютерного моделирования подтверждение следующей идеи: объяснить реальную Вселенную можно только в том случае, если в ней действительно содержится большое количество темной материи. Без нее не образовалось бы таких сложных космических структур, которые мы наблюдаем сегодня. Проще говоря, без темной материи большинство галактик, а значит, звезд с планетами никогда бы вообще не сформировалось. Это впечатляющее заключение прекрасно подкрепляется данными, которые свидетельствуют о мельчайших колебаниях температуры в далеком космосе, что является следствием воздействия совсем молодой Вселенной на космическую микроволновую фоновую радиацию. Еще в конце 1970-х годов было признано, что эти колебания в космическом микроволновом фоне, хотя и способствовали зарождению сегодняшнего распределения материи во Вселенной, слишком незначительны, чтобы объяснить, как могли образоваться галактики. Дополнительному комкованию, которое для этого необходимо, способствовало наличие темной материи. Когда спутник СОВЕ[29] установил, что эти колебания совпадают с предсказанными результатами, это стало одним из величайших научных прорывов конца XX века. С тех пор дальнейшие космические миссии помогли нарисовать более точную картину расположения таких «морщин» на космическом микроволновом фоне – например, миссия WMAP (Wilkinson Microwave Anisotropy Probe – космический аппарат НАСА для изучения реликтового излучения, образовавшегося в результате Большого взрыва), организованная НАСА в первом десятилетии этого века, а затем спутник Планка Европейского космического агентства, запущенный в 2009 году.

Хотя у нас осталось мало сомнений в существовании темной материи, мы все еще не знаем, из чего она состоит. Постоянным источником разочарования для астрофизиков является то, что одновременно с данными в пользу существования темной материи нам так и не удалось установить, что она собой представляет. Общее мнение на данный момент таково, что она состоит из тяжелых (в сравнении с элементарными) частиц нового типа, и экспериментальные усилия до сих пор в основном были сосредоточены на создании сложных подземных детекторов, которые способны зафиксировать такие чрезвычайно редкие события, как непосредственное столкновение частицы темной материи с атомом в детекторе. Пока что в результате этих сложнейших и точнейших экспериментов не зарегистрировано никаких новых сигналов.

И все же физики, занимающиеся поиском темной материи, настроены оптимистично. Скорее всего, окажется, говорят они, что холодная темная материя состоит из медленных тяжелых частиц. И нет конца предположениям о том, что это на самом деле за частицы. Им дают такие прекрасные наименования, как аксионы, стерильные нейтрино, WIMP-частицы[30] и GIMP-частицы[31]. Многие уверены, что скоро появятся и соответствующие экспериментальные данные. Однако об этом мы слышим уже давно.

Здесь я должен сказать пару слов о нейтрино, которые некоторые время считались главными кандидатами на роль элементов темной материи. Это трудноуловимые, но многочисленные частицы, существование которых доказано, хотя они имеют ничтожную массу и практически невидимы. Для того чтобы получить хотя бы 50 %-ный шанс их удержать, понадобился бы свинцовый щит толщиной в один световой год. Вполне можно сказать, что они во всех отношениях являются темной материей. Однако они не могут представлять собой ту темную материю, которую мы ищем, потому что, будучи такими легкими, они перемещаются почти со скоростью света – слишком быстро, чтобы оставаться в пределах галактик и отвечать за их аномальные характеристики. Поскольку нейтрино так быстро передвигаются, мы называем их горячей темной материей.

И как будто физикам не хватало нерешенной проблемы темной материи – во Вселенной обнаружилась новая субстанция, которая играет решающую роль в ее развитии.

Темная энергия

В 1998 году, изучая слабый свет, исходящий от сверхновых звезд в далеких галактиках, астрономы использовали эти данные для того, чтобы рассчитать, с какой скоростью эти галактики удаляются от нас в связи с расширением Вселенной. Выяснилось, что они удаляются медленнее, чем можно было бы предположить, исходя из разделяющего нас расстояния. Поскольку свет, который сейчас доходит до нас из этих галактик, они испускали, когда Вселенная была совсем молодой, то замедленная скорость их удаления означает, что в прошлом Вселенная расширялась более медленными темпами. Таким образом, вместо замедляющегося расширения Вселенной, которое должно происходить вследствие кумулятивного гравитационного притяжения всей находящейся в ней материи, что-то заставляет Вселенную расширяться быстрее, чем в прошлом.