Это странное свойство света, как оказывается, обусловлено не самим светом, а свойствами скорости, с которой свет может перемещаться, – скорости, максимально возможной в нашей Вселенной и являющейся связующим звеном между пространством и временем. Ибо свет способен перемещаться с одной и той же скоростью с точки зрения всех наблюдателей вне зависимости от того, с какой скоростью перемещаются они сами, только при одном условии – если мы изменим свое понимание расстояния и времени.
Еще пример. Представьте, что вы посылаете с Земли серию импульсов, или вспышек, в космос – вашему другу, который унесся ввысь на сверхмощной ракете, способной развивать скорость до 99 % скорости света. Вы будете измерять импульсы, которые удаляются от вас со скоростью миллиард километров в час и, значит, постепенно обгоняют ракету вашего друга на 1 % скорости света; так же как автомобиль на хайвее может ехать чуть быстрее, чем машина на соседней полосе, и обгонит ее со скоростью, равной разности их скоростей. Но что увидит ваш друг в ракете, если будет следить за обгоняющими его импульсами? Теория относительности говорит нам, что он все равно увидит, что импульсы обгоняют ракету со скоростью один миллиард километров в час. Помните, что скорость света постоянна, причем для всех наблюдателей.
Все это можно осмыслить только при условии, что время на борту ракеты течет медленнее, чем для вас здесь, на Земле. Только тогда то, что вы наблюдаете как импульс света, медленно обгоняющий ракету, вашему другу покажется мгновенно пронесшимся мимо, поскольку на ракете с ее медленно текущим временем пройдет лишь мгновение, хотя для вашего друга часы будут тикать в нормальном темпе. Одно из следствий того, что все наблюдатели воспринимают скорость света одинаково, – мы по-разному оцениваем время и расстояние. И это действительно так: постоянство скорости света является для всех наблюдателей фактом, вновь и вновь подтверждаемым на практике; в ином случае наш мир лишился бы всякого смысла.
Специальная теория относительности помогает разрешить это парадоксальное противоречие, комбинируя время и пространство таким образом, что результат приемлем для всех. Представьте, что все пространство заключено в огромную кубическую емкость. Чтобы определить некое событие внутри этой емкости, припишем ему координаты
Пытаясь представить себе 4D время-пространство снаружи, мы испытали бы всю полноту бытия, причем не только в пространстве, но и во времени: прошлое, настоящее и будущее в едином и застывшем состоянии. Такое вообразить невозможно, это выше человеческого понимания, потому что на самом деле мы всегда находимся в ловушке блоковой вселенной и воспринимаем ход времени как непрерывное медленное движение по оси времени, плавный переход от одного «куска хлеба» к другому, как будто кадры фильма сложены в стопку, а не следуют друг за другом, как на пленке. Концепция блоковой вселенной помогает нам понять, как может меняться наше восприятие действительности под воздействием теории относительности. Два наблюдателя, которые перемещаются с большой скоростью друг относительно друга, могут зафиксировать два события – скажем, вспышки света, но они разойдутся во мнении по поводу того, какова разница во времени между этими событиями или на каком расстоянии друг от друга они произошли. Это та цена, которую мы должны заплатить, если хотим воспринимать скорость света одинаково. Если рассматривать расстояния и временные интервалы в рамках четырех измерений, заданных теорией блоковой вселенной, то их можно объединить в одно целое, так что интервал между любыми двумя событиями, который называется пространственно-временным интервалом, будет для всех наблюдателей одинаковым. Их разногласия в отношении расстояния и времени, рассматриваемых по отдельности, оказываются не более чем различием в их пространственно-временном положении. Мы с вами можем смотреть на куб под разными углами зрения; и тогда то, что я увижу как глубину (то есть расстояние, измеряемое вдоль линии моего взгляда), будет отличаться от того, что увидите вы, глядя на куб из фронтальной позиции. Однако мы все равно согласимся, что это куб с ребрами равной величины, а любое различие объясняется различием в углах зрения. То же происходит и с четырехмерной блоковой вселенной. Мы всегда будем считать пространственно-временные интервалы между событиями одинаковыми.
Теория относительности Эйнштейна гласит: мы должны рассматривать предметы в рамках четырехмерного пространства-времени, в котором и пространственный, и временной интервал зависит от позиции наблюдателя. Ни один из наблюдателей не может утверждать, что его угол зрения на пространство и время является более правильным, чем любой другой, ибо, как только мы начнем рассматривать пространство и время в их единстве, мы сразу придем к согласию. Взятые по отдельности, пространство и время носят относительный характер, а вот пространство-время как единое целое – абсолютно.
Рис. 1. События в пространстве-времени: два наблюдателя, А и В, движущиеся с большой скоростью относительно друг друга, видят два события (вспышки света), которые разделены в пространстве и времени. Наблюдатели будут по-разному оценивать расстояние и временной интервал между этими событиями. Это объясняется тем, что они по-разному воспринимают пространство и время. Однако в четырехмерном пространстве-времени (для простоты мы здесь пренебрегли двумя пространственными измерениями) пространственно-временной интервал в обеих системах одинаков: два прямоугольных треугольника имеют общую гипотенузу, хотя катеты – расстояние и интервал времени – у них разные.
Общая теория Эйнштейна
Специальная теория Эйнштейна объединяет пространство и время, а его общая теория – пространство-время с материей и энергией; этому и посвящена следующая глава. В ней я расскажу о притяжении. Согласно теории Ньютона сила притяжения действует как резиновая лента, натянутая между телами. Она тянет их друг к другу, сколь далеко друг от друга они бы ни располагались. Эйнштейн дает более глубокое и точное объяснение: сила притяжения, ощущаемая телом, – это мера искривления пространства-времени вокруг этого тела.
Это искривление не поддается визуализации. Невозможно представить себе даже пространственно-временное «плоское» 4D-пространство-время, не говоря уже о его кривизне. В большинстве ситуаций ньютоновское описание притяжения как силы достаточно точно соответствует наблюдаемым фактам, однако его недостатки становятся тем очевиднее, чем сильнее гравитация, например, когда мы приближаемся к черной дыре или когда нам нужно очень точно измерить расстояние и время, скажем, на борту спутника GPS. В таких ситуациях нам придется отказаться от ньютоновского представления и полностью признать эйнштейновское понимание искривленного пространства-времени.
Поскольку притяжение определяется искривлением пространства-времени, оно оказывает влияние на ход времени, а также на форму пространства. Для нас, существующих в рамках пространства-времени, этот эффект проявляется в замедлении течения времени, подобном тому, что мы наблюдаем, когда тела движутся со скоростью, близкой к скорости света. Чем ближе к источнику поля часы, тем сильнее притяжение и тем медленнее они будут тикать по сравнению с часами, удаленными от источника поля в более «плоском» пространстве-времени.
К несчастью для тех, кто предпочитает простые объяснения непростых идей и не любит сложной математики, физики чаще всего не могут дать правильного объяснения, как и почему в условиях сильного притяжения время идет медленнее, либо вообще не могут объяснить это явление. Однако я попробую это сделать.
Согласно специальной теории относительности два человека, движущиеся относительно друг друга, будут фиксировать замедление тиканья часов на руке партнера; аналогичная ситуация происходит, когда два наблюдателя находятся на закрепленном расстоянии друг от друга, но на одного из них действует более мощное притяжение (например, один на Земле, а другой – в космосе). Опять же они будут по-разному воспринимать временной интервал между одними и теми же событиями. Как и в предыдущем случае, их часы тикают по-разному, поскольку тот, что на Земле, оказывается на большей глубине гравитационного колодца, где искривленность пространства-времени сильнее. То есть его часы идут медленнее. Однако, в отличие от специальной теории относительности, ситуация здесь больше не является симметричной, поскольку этот наблюдатель будет воспринимать часы в космосе как тикающие с большей скоростью. Можно сказать, что причина «падения» тела на Землю заключается в том, что оно всегда движется туда, где время идет медленнее, – оно старается замедлить процесс своего старения. Разве это не прекрасно?
Итак, мы обсудили воздействие притяжения на время. А как насчет пространства? Что говорит нам общая теория Эйнштейна относительно того, что притяжение «приводит к искривлению пространства»? Помните, Аристотель и Декарт утверждали, что если нет никакой материи, которая могла бы заполнить пространство, то последнее не может существовать? Эйнштейн развил эту идею. Согласно его общей теории материя и энергия создают гравитационное поле, а пространство-время – это не более чем «структурное свойство» этого поля. А без того, что «содержится» в пространстве-времени, не может быть никакого гравитационного поля, а следовательно, никакого пространства и времени.
Возможно, это звучит несколько философски, и я подозреваю, что даже некоторым физикам это не очень понравится. Проблема отчасти в том, как мы вообще преподаем физику. Обычно мы начинаем со специальной теории относительности и с «плоского» пространства-времени (поскольку эту теорию легче объяснить и поскольку именно она первой пришла Эйнштейну в голову), затем мы переходим к более трудной общей теории относительности, в которой «плоское» пространство-время заполняется материей и энергией, которые заставляют его искривляться. На самом деле концептуально следует делать наоборот – начинать с материи и энергии в рамках пространства-времени. В этом смысле специальная теория относительности – просто идеализированное приближение, которое работает только в случаях, когда притяжение столь мало, что пространство-время может считаться плоским.
То, что я хочу сказать, – штука достаточно тонкая, но, может быть, вас утешит, что и сам Эйнштейн не до конца понимал ее значение. Через два года после окончания работы над общей теорией относительности он написал научно-популярную книгу (или брошюру, как он сам ее называл) «Относительность: специальная и общая теории (в упрощенном изложении)», которая была впервые опубликована в Германии в 1916 году. В течение последующих 40 лет, по мере уточнения своей теории на основе новых математических данных, Эйнштейн дополнял свою «брошюру» приложениями. В 1954 году, за год до смерти, он написал пятое, последнее приложение: двадцать страниц самых глубоких мыслей, которые когда-либо рождались в человеческом мозгу.
Чтобы понять идеи Эйнштейна, нужно знать, что такое «поле» в физике. Самое простое определение – это область пространства, содержащая некую форму энергии или воздействия, где каждой точке можно приписать величину, которая отражает характер поля в этой точке. Это похоже на магнитное поле вокруг магнитного бруска. Поле наиболее сильно у полюсов магнита, а по мере удаления от магнита постепенно слабеет. Рисунок, который образуют железные опилки, располагаясь вдоль силовых линий магнитного поля, – это реакция опилок на поле, в котором они оказались. Однако то, что я хочу сказать, кажется слишком очевидным: для существования магнитного поля необходимо пространство.
И наоборот, гравитационное поле в понимании Эйнштейна создается просто при условии существования материи и является не более чем областью воздействия в рамках пространства и времени. Оно и представляет собой пространство-время.
В приложении 5 к своей «брошюре» Эйнштейн попытался разъяснить свое видение этой темы. В новом предисловии к изданию 1954 года он пишет: