Книги

Мир физики и физика мира. Простые законы мироздания

22
18
20
22
24
26
28
30

Нарушение симметрии помогло физикам понять, какие структурные компоненты образуют материю: это элементарные частицы и силы взаимодействия между ними.

Самый известный пример связан с одним из двух типов сил, действующих в пределах атомного ядра, известным под названием «слабая ядерная сила». До 1950-х годов считалось, что законы физики будут работать точно так же и в зеркальном отражении нашей Вселенной. Эта идея (о возможности замены левого на правое) известна как «закон сохранения четности», который справедлив для трех сил природы: тяготения, электромагнетизма и сильной ядерной силы. Однако оказалось, что слабая ядерная сила, которая связана с переходом протонов в нейтроны и обратно, не подчиняется закону зеркальной симметрии. В этом случае при замене левого на правое физика становится другой. Это нарушение зеркальной симметрии теперь является важным элементом Стандартной модели физики частиц.

Редукционизм

Многое в современной науке построено на следующей идее: понять какое-то сложное свойство этого мира можно, только разделив его на составляющие. Это как с часами, которые надо разобрать, чтобы рассмотреть, каким образом все колесики и шестеренки цепляются друг за друга, заставляя часы работать.

Теория о том, что целое является суммой его частей, известна как редукционизм, и она по сей день является столпом, на который опираются многие науки. Она восходит корнями к греческому философу Демокриту и его теории атомизма, гласившей, что материю нельзя бесконечно делить на более мелкие части, поскольку она состоит из цельных структурных элементов. Более поздние философы, Платон и Аристотель, отвергали атомизм и считали, что в мире есть еще что-то, что они представляли как «форму вещей», которой следует дополнять сами субстанции. Взять, например, форму статуи. Значение и суть статуи – нечто большее, чем тот камень, из которого она сделана. Это расплывчатое метафизическое понятие не вошло в современную физику. Однако, если смотреть на вещи с этой точки зрения, легче понять аргументы против редукционизма.

Возьмем другой пример – воду. Можно сколько угодно изучать свойства молекулы H2O – геометрию связей между атомами кислорода и водорода и законы квантовой механики, управляющие ими, то, как молекулы воды прикрепляются друг к другу и какую образуют структуру, и так далее. Но мы никогда не сможем вывести свойство «влажности» воды, анализируя лишь ее элементы на молекулярном уровне. Это «новое» свойство становится очевидным, только когда мы наблюдаем триллионы молекул воды в их совокупности.

Значит ли это, что целое – это больше, чем сумма его частей, в том смысле, что нам нужна какая-то дополнительная физика, чтобы объяснить, к примеру, свойства материи в массе? Не обязательно. Идея вновь возникающих физических свойств, таких как тепло, давление или влажность, которые не имеют аналогов на уровне атомной физики, не означает, что система – это нечто большее, чем сумма ее частей, при условии, что эти новые свойства основаны на более фундаментальных концепциях, например электромагнитные силы между субатомными частицами в случае воды.

Редукционистская гипотеза получила новое развитие, когда физики XIX века попытались исследовать свойства сложных систем, которые не подчинялись простым законам ньютоновской механики. Так, открытия Джеймса Максвелла и Людвига Больцмана привели к тому, что к концу века возникли две новые области физики – термодинамика и статистическая механика, что помогло ученым исследовать системы, состоящие из множества частиц, рассматривая их «оптом». (Мы более подробно поговорим об этих разделах физики в главе 6).

Таким образом, хотя нельзя измерить температуру и давление газа, изучая, каким образом отдельные молекулы вибрируют и сталкиваются друг с другом, мы все-таки признаем, что температура и давление определяются не чем иным, как коллективным поведением отдельных молекул. А чем же еще?

Однако, хотя эту редукционистскую идею нельзя считать ложной – в том смысле, что нет никаких волшебных физических процессов, которые бы вдруг возникали, когда мы удаляемся от молекулярного масштаба, – она никак не помогает нам описывать свойства сложных систем. Но, чтобы узнать и понять, как на основании совокупного поведения составляющих частей в системе могут возникать какие-то новые свойства, нам нужна не «новая» физика или «больше» физики. Нобелевский лауреат Филип Андерсон изложил эту мысль в своей знаменитой работе «Много – это другое дело» (More is different).[12]

Однако понимать, что для исследования массива, полученного объединением составляющих его элементов (частиц, атомов и молекул), необходимо больше физики, – это не то же самое, что знать, какой физики нам не хватает. Это становится ясно, если попытаться составить единую картину физической Вселенной. Например, мы еще не умеем выводить законы термодинамики из Стандартной модели физики частиц – или, собственно, делать обратное, поскольку неясно, какой из этих двух столпов физики является более фундаментальным. И мы еще дальше от понимания того, например, что отличает живое от неживого. В конечном счете и я, и вы – все мы состоим из атомов, а то, что мы живы, – это не просто вопрос сложности, поскольку живой организм с точки зрения его атомной структуры не более сложен, чем такой же, но мертвый организм.

И все же… наверное, можно мечтать о том времени, когда мы разработаем единую физическую теорию, которая будет лежать в основе всех природных явлений. До тех пор достаточно помнить, что редукционистская гипотеза имеет серьезные ограничения, а нам нужно пользоваться различными теориями и моделями, в зависимости от того, что мы пытаемся описать.

Пределы универсальности

Несмотря на наше стремление найти универсальные законы физики, ограниченность редукционизма указывает на тот факт, что иногда физические объекты ведут себя по-разному в зависимости от масштабов явления, и анализировать их надо, опираясь на соответствующую модель или теорию. Например, если рассматривать уровень планет, звезд и галактик, то в этом мире главенствует сила тяготения – она поддерживает структуру Вселенной. Однако на уровне атомов она не играет никакой сколько-нибудь заметной роли, поскольку там доминируют другие три силы: электромагнетизм и слабые/сильные ядерные силы. Наверное, самая большая нерешенная проблема всей физики, о которой мы поговорим в главе 5, заключается в том, что законы физики, описывающие наш так называемый классический мир материи, энергии, пространства и времени, просто не работают, когда мы сужаем этот мир до отдельных атомов, где начинают работать совершенно иные законы квантовой механики.

Даже на квантовом уровне нам приходится выбирать ту модель, которая более всего применима к изучаемой системе. Еще с начала 1930-х годов известно, например, что атомное ядро состоит из протонов и нейтронов, однако в конце 1960-х было обнаружено, что эти частицы не являются элементарными, а состоят из более мелких составляющих, кварков. Но физики-ядерщики не описывают свойства ядер с помощью кварковых моделей. Хотя на основе упрощенного редукционистского подхода можно предположить, что для более глубокого, более точного описания атомного ядра это просто необходимо. Тем не менее пользы от этого мало. Можно с достаточной уверенностью утверждать, что при описании свойств ядер протоны и нейтроны ведут себя так, как будто они неделимые частицы, а не сложные системы из трех кварков. Поэтому, хотя их свойства и поведение в конечном счете должны определяться их внутренней структурой, это вовсе не очевидно и не обязательно, если мы хотим узнать о таких свойствах, как форма и стабильность ядра. Вообще говоря, даже в самой ядерной физике используется целый ряд очень разных математических моделей, причем каждая лучше всего подходит для определенного класса ядер. Универсальной же теории ядерной структуры не существует.

Вот это я и имею в виду, когда говорю о том, что физические объекты ведут себя по-разному в зависимости от заданного масштаба, рассматриваемого интервала времени и энергии. Физика имеет две чудесные особенности – универсальность многих ее теорий и то, что, более глубоко изучая и анализируя систему, мы лучше понимаем, как ее части соотносятся с целым. Однако верно и то, что нам часто приходится делать выбор в пользу теории, более подходящей для конкретного масштаба. Если вам нужно починить стиральную машину, то вам совсем не обязательно знать все сложности Стандартной модели физики частиц – пусть даже стиральная машина, как все остальное в мире, в конечном счете состоит из кварков и электронов. Если бы мы попытались применить фундаментальные теории физики о квантовой природе мира к нашей будничной жизни, мы бы далеко не ушли.

Теперь, когда мы узнали о возможностях и границах того, в чем нам полезна физика, – от потенциала математической симметрии, лежащей в основе физических законов, от масштаба, в котором эти законы можно применять, до ограничений, налагаемых редукционизмом и универсальностью, – мы готовы наконец взяться за дело. Я начну следующую главу с первого из трех фундаментальных столпов физики – с теории относительности Эйнштейна.

Глава 3. Пространство и время

В такой небольшой книге у меня нет возможности рассказать обо всех областях физики, пусть даже многие очень интересны. Я решил свести существующее понимание устройства мира с точки зрения физики к трем основным постулатам, к трем картинам мира в разных ракурсах. Первая, которой посвящены следующие две главы, основана на исследованиях Альберта Эйнштейна в начале XX века. Она отражает наше современное понимание того, как в крупнейшем масштабе ведут себя материя и энергия под воздействием силы тяготения, – знаменитая общая теория относительности.

Чтобы написать эйнштейновскую картину мира, нужно начать с холста. Базис, на котором происходят все события, – это пространство и время. Однако эти понятия неоднозначны.