Книги

Искусство мыслить рационально. Шорткаты в математике и в жизни

22
18
20
22
24
26
28
30

Затем выбегает следующий игрок. Его день рождения должен отличаться как от моего, так и от дня рождения второго футболиста. Поскольку остается еще 363 дня, вероятность несовпадения ни с одним из наших дней рождения равна 363/365. Вероятность же того, что среди трех уже вышедших на поле людей нет совпадений дней рождения, составляет 364/365 × 363/365.

И так далее, пока на поле не окажутся все 22 футболиста… и судья. Каждый раз, когда на поле выходит очередной человек, количество возможных дней рождения, с которыми нужно не совпасть, увеличивается. К моменту выхода судьи нужно, чтобы его или ее день рождения не совпал с 22 днями рождения тех, кто уже на поле, а вероятность такого несовпадения равна (365 – 22)/365 = 343/365.

Когда на поле окажутся все 23 человека, вероятность того, что ни у кого из них не совпадают дни рождения, можно будет вычислить по формуле:

364/365 × 363/365 × 362/365 × … × 344/365 × 343/365 ≈ 0,4927.

Мы вычислили вероятность события, противоположного искомому. Теперь нужно ее перевернуть. Вероятность того, что на поле есть два человека с совпадающими днями рождения, равна 1 – 0,4927 = 0,5073. Казалось бы, невероятно, однако наличие совпадения дней рождения более вероятно, чем его отсутствие. Другими словами, в среднем в 5 из 10 матчей Премьер-лиги в каждые выходные на поле оказываются два человека с одинаковыми днями рождения.

Интересно отметить, что в реальности это число, вероятно, еще больше, потому что есть данные, что дни рождения футболистов чаще выпадают на сентябрь и октябрь. Почему? Те, кто родился ближе к началу учебного года, с большей вероятностью оказываются более развитыми физически, чем их одноклассники, родившиеся, как я, в августе[105]; у них больше шансов пройти отбор в школьную футбольную команду и набраться опыта в ее играх. Я живо помню, как недоумевал, почему я никогда не побеждал в школьных забегах. Но однажды, когда в нашем городе была летняя ярмарка, я принял участие в соревнованиях по бегу, которые проводили по возрастным группам. Поскольку было лето и мой день рождения еще не наступил, а все мои одноклассники свои уже отпраздновали, я попал в забег с ребятами, учившимися на класс младше. К огромному моему изумлению, я оставил соперников позади и впервые в жизни пришел к финишу первым.

Но и после этого хилому юному дю Сотою пришлось сидеть в библиотеке, пытаясь стать асом математики.

Шорткат в казино

Математики пользуются большим спросом в Лас-Вегасе, потому что казино постоянно ищут все новые шорткаты, которые помогли бы увеличить их преимущество в играх. Взять, к примеру, столы для игры в крэпс, модифицированного варианта той же игры, которую наблюдал Пипс. Делать ставки, играя в крэпс, – дело очень сложное из-за динамики этой игры, но в любой момент можно сделать ставку на то, что при следующем броске костей выпадет семь. Я уже объяснял, что в среднем такое происходит в 1 случае из 6. Однако, если вы поставите на этот исход доллар и выиграете, казино заплатит вам всего 4 доллара в дополнение к вашей 1-долларовой ставке. Если бы игра была честной, вам следовало бы заплатить 5 долларов. Такая ставка – одна из худших из всех, какие можно сделать в игре в крэпс, потому что она дает заведению преимущество 16,67 процента. Речь идет о прибыли, которую казино (в среднем) получает каждый раз, когда игрок делает ставку.

Если вам все же совершенно необходимо поставить на «семерку», есть лучший способ, позволяющий уменьшить преимущество заведения. Нужно разделить ставку натрое. Вы делаете не одну ставку на число 7, а сразу три: первую на то, что на костях выпадет 1 и 6, вторую – на 2 и 5, а третью – на 3 и 4. Такая ставка называется «хоп-бет»[106]. Хотя в совокупности три эти ставки означают то же, что и ставка на сумму, равную 7, выплата по каждой из них выгоднее, чем по ставке на «семерку». В этом случае преимущество заведения при каждой ставке составляет (в среднем) всего 11,11 процента.

Все игры, в которые играют в Лас-Вегасе, были тщательно проанализированы, чтобы обеспечить выигрыш заведения в долговременной перспективе, но игрок может, используя инструменты, которые разработали Паскаль и Ферма, находить места, в которых у него появляются лучшие шансы потерять деньги медленнее, чем где бы то ни было еще.

Например, в игре в крэпс есть ставка, по которой заведение выплачивает в зависимости от вероятности выигрыша. Это почти что единственная имеющаяся в казино возможность играть по правилам, не дающим преимущества заведению. В игре в крэпс игрок бросает кости и устанавливает целевое число. Оно должно быть равно 4, 5, 6, 8, 9 или 10. Если выпадает 2, 3, 7, 11 или 12, партия заканчивается. В случае 7 или 11 выигрывает игрок, а 2, 3 и 12 считаются проигрышными числами; случаи, когда выпадают они, называются «крэп». Если целевое число установлено, цель игрока (сделавшего такую ставку) – выкинуть это число еще раз прежде, чем выпадет 7.

Если поставить на то, что целевое число выпадет до появления «семерки», такая ставка не дает преимущества заведению. Предположим, целевое число равно 4. Если поставить 1 доллар на то, что 4 выпадет еще раз раньше, чем 7, и это произойдет, казино выплатит сверх 1-долларовой ставки еще 2 доллара, то есть всего 3. Это в точности соответствует вероятности такого события. Число 4 дают три комбинации костей, а число 7 – шесть, то есть такая ставка выигрывает один раз из трех. По этой ставке казино платит, не подкручивая соотношение вероятностей в свою пользу. Этот вероятностный шорткат не помогает разбогатеть, но по меньшей мере гарантирует, что игрок не отдает деньги просто так. Использование этой ставки означает, что в долгосрочной перспективе игрок должен остаться при своих.

Вот вам небольшая задача. Перейдем к рулетке. У вас есть 20 долларов. Ваша цель – по возможности удвоить эту сумму. Если вы поставите на красное и оно выиграет, вы получите в два раза больше, чем поставили. Какая стратегия имеет больше шансов на выигрыш? Стратегия А: поставить сразу все деньги на красное. Стратегия Б: каждый раз ставить на красное по одному доллару.

На первый взгляд может показаться, что никакой разницы нет, но у рулеточного колеса есть одна особенность. На нем расположены 36 чисел, половина из которых красные, а половина – черные, но, кроме того, есть еще 37-е число – зеро (0); его ячейка зеленая[107]. Если шарик попадает на него, вы теряете деньги, на что бы вы их ни поставили, красное или черное. В этом случае заведение обыгрывает всех[108]. Казалось бы, ничего страшного, но казино вычислили, что зеро открывает им шорткат к прибыли. Во всяком случае, в долгосрочной перспективе!

Поэтому шансы выигрыша и проигрыша при ставке на красное не равны. Вероятность выигрыша чуть меньше: она составляет 18/37. Предположим, вы ставите по 1 доллару на красное при 37 запусках колеса, и по странному стечению обстоятельств каждое из чисел, имеющихся на колесе, выигрывает по одному разу. Тогда в 18 случаях вы выигрываете по 1 доллару, но в 19 проигрываете по 1 доллару, и в результате у вас остается всего 36 долларов. Значит, с каждой 1-долларовой ставки вы, по сути, платите заведению по 1/37 ≈ 0,027 доллара. Преимущество заведения составляет 2,7 процента[109]. Чем больше играешь, тем больше теряешь.

При использовании стратегии А, когда вы ставите разом все 20 долларов, вероятность удвоения ваших денег равна 18/37, то есть около 48 процентов, даже меньше равных шансов. Но, если вы играете по стратегии Б, вы платите по доллару за каждую ставку, а следовательно, эта стратегия постепенно уводит вас все дальше и дальше от цели – удвоения исходного капитала. Собственно говоря, в долгосрочной перспективе вероятность того, что эта стратегия позволит вам удвоить капитал, составляет всего 25 процентов.

Хотя стратегия А дает больше надежды, игра по ней означает, что вы проведете в казино лишь довольно короткое время. Вечер игры по стратегии Б может быть более интересным, но за это удовольствие вам придется заплатить.

Возможно, вы слышали, что игроку, желающему получить преимущество перед казино, место за столом для блэкджека. В 1960-х годах математик Эдвард Торп сообразил, что, наблюдая за картами, которые приходят дилеру и другим игрокам, в этой игре можно получить преимущество[110]. Эта методика называется подсчетом карт. В блэкджеке нужно добиться, чтобы ваши карты давали сумму, равную или меньшую 21, но большую, чем у дилера. Если вы перебираете – набираете больше 21, – вы проигрываете. Ключевой фактор, обеспечивающий эффективность подсчета карт, – это правило, согласно которому дилер всегда обязан брать очередную карту, если у него на руках 16 или меньше очков.

В колоде есть 16 карт, сто́ящих по 10 очков (десятки, валеты, дамы и короли). Если вы знаете, что в колоде еще остается много таких карт, значит, велика вероятность того, что дилер, взяв следующую карту, переберет; поэтому вам имеет смысл делать более крупные ставки. Подсчет карт – простой метод, позволяющий отслеживать, сколько старших карт уже было отыграно, а сколько еще остаются в колоде. Как правило, в казино используют на каждом столе не по одной, а по шесть-восемь колод, чтобы минимизировать действенность подсчета, но даже тогда он дает игроку преимущество. Фильм «Двадцать одно» (2008) был снят по мотивам подлинной истории группы математиков из MIT, использовавших шорткат Торпа в Лас-Вегасе. Занудные математики вышли в нем такими сексапильными и обаятельными, что этот фильм, вероятно, сделал для популярности математики среди абитуриентов университетов больше, чем совокупные усилия всех математических факультетов по всей стране.