Книги

Трещина в мироздании

22
18
20
22
24
26
28
30

Виргиниюс Шикшнис и его коллеги осенью 2012-го опубликовали статью, сходную с нашей[79]; она описывала функции белка Cas9, найденного в производящих йогурт бактериях, относящихся все к тому же роду стрептококков. Как и мы, литовские исследователи обнаружили, что Cas9 разрезает последовательности ДНК, “буквы” которых подходят к “буквам” РНК CRISPR. Но команда Шикшниса не смогла раскрыть важнейшую роль второй РНК (так называемой трансактивационной РНК, tracrRNA), которая, как удалось показать нам, была неотъемлемой частью реакции нацеливания на нужный участок ДНК и разрезания этой молекулы.

В своей статье мы максимально подробно описали молекулярные требования этой защитной системы и показали, насколько легко и просто можно настроить новые версии CRISPR для разрезания ДНК любым нужным образом. Мы сделали еще один шаг вперед и из направляющей РНК, состоящей у бактерий из двух отдельных молекул РНК (РНК CRISPR и трансактивационной РНК), сделали одну молекулу РНК-гида, тоже дающую Cas9 возможность находить и вырезать определенную последовательность ДНК. Мы также предположили, что эту систему защиты можно настроить на выполнение других функций в клетках – например, не на разрушение вирусной ДНК, а на прицельное редактирование ДНК самой клетки. Если мы поменяем двадцатибуквенный код РНК таким образом, чтобы он был комплементарен последовательности отдельно взятого человеческого гена, и затем введем Cas9 и новую направляющую РНК в клетки человека, CRISPR сделает хирургически точный разрез в гене-мишени, отметив это место как нуждающееся в репарации. Разрезав ДНК, CRISPR приведет клетку в полную боевую готовность, и она устранит внутри себя повреждения – но так, что мы сможем контролировать этот процесс.

Как мы предполагали, использование CRISPR в человеческих клетках подтвердит широту возможностей этого нового способа редактирования генов. И для этих предположений были веские причины. Наше собственное исследование показало, что белок Cas9 и его направляющая РНК очень избирательны и крепко связаны друг с другом, а это свидетельствует, что они без проблем найдут друг друга в человеческой клетке. А что касается отправки их в клеточное ядро, где расположена ДНК, то тут нам достаточно присвоить этим молекулам подходящий химический “адрес получателя”, и клетка сама сделает остальную работу за нас. До этого сотрудники многих лабораторий преуспели в переносе белков и молекул РНК от бактерий в клетки человека, и в нашем распоряжении было немало молекулярно-биологических инструментов, которые помогли бы CRISPR работать должным образом и за пределами его обычных мест обитания.

Нам оставалось только показать, что все работает именно так, как мы и предположили.

Мартин начал с переноса бактериальной ДНК, кодирующей Cas9, и синтезированной на основе информации от CRISPR РНК в две плазмиды – небольшие колечки ДНК, которые ведут себя как искусственные мини-хромосомы. Первая плазмида содержала генетические инструкции для направляющей РНК, а также отдельные инструкции для человеческих клеток, чтобы они тоже понемногу производили такие молекулы РНК. Во второй плазмиде находился ген cas9, но он был “гуманизирован”[80], чтобы его могли прочесть белок-синтезирующие аппараты человеческих клеток. Мартин также слил с геном cas9 еще два гена, часто используемых биологами: один, совсем небольшой, под названием клеточный сигнал ядерной локализации, направляющий белок в клеточное ядро, и ген зеленого флуоресцентного белка, благодаря которому каждая человеческая клетка, производящая белок Cas9, должна была засветиться зеленым, если на нее подействовать ультрафиолетом.

Соединив все эти молекулярные компоненты в единую систему, мы с Мартином намеревались превратить человеческие клетки в фабрики для производства CRISPR, которые, сами того не ведая, штампуют молекулы, запрограммированные на разрезание заданных частей собственного генома. И еще мы знали, что CRISPR не убьет человеческие клетки “шинкованием” ДНК, как он делает это с вирусами в бактериях, разрезая вирусную ДНК. ДНК человека (да и всех эукариотических организмов, если уж на то пошло) постоянно получает повреждения – например, это происходит, когда она подвергается воздействию канцерогенных веществ, ультрафиолета либо рентгеновского излучения. И чтобы приводить в порядок поврежденную ДНК, клетки разработали хитроумные системы репарации двуцепочечных разрывов в ней. Таким образом, в самом вероятном сценарии, если CRISPR вырежет нужный ген, клетка ответит на это просто “склеиванием” фрагментов молекулы ДНК обратно в единое целое, будто приварит одну металлическую трубу к другой. Ученые именуют этот процесс негомологичным соединением концов, ведь он, в отличие от гомологичного, не требует ДНК-шаблонов для починки молекулы. (Слово “гомологичный” происходит от греческого homologos, означающего “согласный с законом”.)

Ключевая особенность этого процесса репарации – заложенная в самой его природе небрежность. Как сварщик перед работой должен удостовериться, что у обеих труб очищены торцы, подлежащие сварке, так и клетке перед соединением фрагментов разорванной ДНК тоже нужно убедиться, что концы этих фрагментов чистые. Создание чистых концов иногда требует удаления или вставки нескольких “букв” ДНК, что приводит к изменениям состава генов после окончания процесса репарации. Это означает, что ген, скорее всего, изменится после “атаки” и вырезания его CRISPR и последующей починки за счет клетки. Этот неточный и порождающий ошибки способ репарации должен был обеспечить нам с Мартином простой метод выявления успешных попыток редактирования генов. Выбирая в качестве мишени конкретный ген и анализируя последовательность его нуклеотидов буква за буквой до воздействия CRISPR и после него, мы могли бы найти любой признак неаккуратной репарации, а это доказало бы, что CRISPR обнаружил свою цель и разрезал ее.

Мы с Мартином решили запрограммировать CRISPR таким образом, чтобы он атаковал человеческий ген, который называется ген легкой цепи клатрина A (CLTA) и задействован в эндоцитозе – процессе, который клетки используют для захвата питательных веществ и гормонов. Мы не изучали эндоцитоз, но ген CLTA уже был отредактирован по более старой технологии ZFN в лаборатории профессора Дэвида Друбина, которая тоже находится в Беркли. Поэтому мы знали, что редактирование этого гена возможно, а тестирование CRISPR на материале, на котором уже изучали ZFN, помогло бы нам выявить сходства и различия действия двух методов. Конечно, создание инструмента на основе ZFN для редактирования CLTA требовало нескольких месяцев работы и тесного сотрудничества с компанией, бесплатно предоставившей команде Дэвида ZFN (в то время разработка одного ZFN стоила непозволительно дорого – 25 000 долларов). В случае Мартина все было совсем иначе: ему потребовалось всего несколько минут, чтобы смоделировать на компьютере аналогичный[81] вариант CRISPR, и синтезировать нужные молекулы можно было за несколько десятков долларов. В конце концов, это и есть одно из главных преимуществ CRISPR – то, что вам фантастически легко указывать в качестве мишени определенные гены. Все, что нужно было сделать, – выбрать желаемую двадцатибуквенную последовательность ДНК для редактирования и затем перевести ее в соответствующий двадцатибуквенный код РНК. Когда эта РНК окажется в клетке, она соединится с подходящей последовательностью ДНК по принципу комплементарности, и Cas9 разрежет ДНК.

Экспериментальной площадкой для нашего первого испытания редактирования генома должны были стать клетки линии HEK 293. Впервые полученные в 1973 году из клеток почки абортированного плода, клетки HEK 293 снискали популярность среди специалистов в клеточной биологии благодаря простоте их культивирования в лаборатории и тому, насколько легко они принимали в себя чужеродную ДНК. Когда мы смешали две плазмиды (одну – с генетическими инструкциями по производству Cas9 и вторую – с генетическими инструкциями по сборке направляющей РНК) в маслянистом растворе молекул, которые называются липидами, то мини-хромосомы (плазмиды) стали спонтанно захватываться жировыми пузырьками, очень похожими на капли жира на поверхности куриного бульона. После того как мы добавили эту смесь к культурам клеток HEK 293, жировые пузырьки должны были слиться с клеточными мембранами и выбросить содержащуюся в них ДНК внутрь клеток. Оказавшись в клетке, ДНК подверглась бы копированию, транскрипции и трансляции, в результате чего получатся белок Cas9 и направляющая РНК, специфически связывающая ген CLTA. Разрезающий ДНК аппарат должен был затем транспортироваться внутрь ядра, где находились наши целевые последовательности ДНК. Мы предполагали, что он найдет правильную двадцатибуквенную последовательность ДНК и разрежет ее. А клетка починит поврежденную ДНК таким образом, что мы это заметим.

Эксперименты Мартина тут же продемонстрировали, что мини-хромосомы действительно давали клеткам человеческой почки возможность производить компоненты CRISPR. Когда Мартин изучал эти клетки под микроскопом, он увидел, что значительная доля клеток светилась зеленым, что могло получиться только в результате образования Cas9, связанного с зеленым флуоресцентным белком. Собрав часть клеток и превратив их в кашицу для анализа различных содержащихся в них молекул РНК, Мартин также обнаружил, что клетки почки производили солидные количества направляющей РНК.

Перенос CRISPR из бактериальных клеток в человеческие сработал так, как мы ожидали, но оставался один резонный вопрос: редактирует ли CRISPR ДНК человека?

Мартин и Александра Ист-Селетски, молодая студентка, недавно присоединившаяся к проекту, измельчили еще некоторое количество клеток, выделили из них ДНК и проанализировали состав гена CLTA. Ошибки быть не могло: ген был отредактирован именно на участке, точно совпадающем с последовательностью направляющей РНК. Для неспециалиста результаты не выглядели впечатляющими – какие-то темные полоски на тонкой пластинке гелеподобного материала, – однако выводы из этих “полосок” и потенциальные применения этих выводов имели грандиозное значение.

Всего в несколько простых и хорошо отработанных стадий мы с Мартином выбрали произвольную последовательность ДНК в состоящем из 3,2 миллиарда “букв” геноме человека, спроектировали вариант CRISPR для ее редактирования и стали наблюдать, как крохотная машинерия выполняла то, на что была запрограммирована, – и не где-нибудь, а в живых человеческих клетках. Своими результатами мы подтвердили работу новой технологии, дающей ученым удивительную способность переписать код жизни с хирургической точностью и поразительной простотой. В мгновение ока CRISPR по своему развитию догнал технологии редактирования генома, исследование и разработка которых шли почти двадцать лет.

Редактирование ДНК в человеческих клетках c помощью CRISPR

Фактически в такой же спешке, как и шестью месяцами ранее, когда мы готовили публикацию с Кшиштофом и Эммануэль, мы написали текст научной статьи с изложением наших новейших результатов. Если наша первая публикация 2012 года содержала прямое указание на то, что CRISPR следует применить в качестве новой платформы редактирования генома в клетках, то во второй статье уже содержались четкие демонстрация и подтверждение внушительных возможностей этой недавно открытой системы.

Когда 2012-й подходил к концу, я ощущала заметную иронию, читая, что журнал Science, опубликовавший нашу статью о CRISPR всего за полгода до этого, поставил редактирование генома на вторую строчку списка прорывов года (первое место отдали бозону Хиггса), но упомянул в этом пункте более старую технологию, TALEN, открытую непосредственно перед началом нашей работы с CRISPR. Мне было интересно, какие еще сюрпризы CRISPR преподнесет научному сообществу.

К моему глубокому удовлетворению, первые две недели 2013 года ознаменовались публикацией еще пяти научных статей о CRISPR (не считая нашей)[82], и все они описывали сходные эксперименты, в которых эту систему применяли для редактирования генов непосредственно в клетках – как мы и предсказали в 2012-м. И профессор МТИ Фэн Чжан, и гарвардский профессор Джордж Чёрч предварительно связывались со мной, чтобы сообщить о готовящихся публикациях. Статьи Чжана и Чёрча появились на сайте журнала Science в начале января, а чуть позже в том же месяце вышли и наша с Мартином статья, и три другие за авторством профессора Джин Су Кима из Сеульского национального университета, профессора Рокфеллеровского университета Лучано Марраффини и профессора Гарвардской медицинской школы Кита Джоунга.

Это было бурное время. Меня окрыляло то, что наша с Эммануэль работа, опубликованная предыдущим летом, вдохновила других ученых на проведение серий экспериментов, подобных нашим. Лишь позднéе содержание этих статей и даты их публикации начали скрупулезно разбирать и сопоставлять для обоснования той или иной позиции в патентных спорах о CRISPR – досадный поворот событий в истории, которая начиналась как сотрудничество исследовательских коллективов, в атмосфере неподдельного общего восторга по поводу того, что смогут дать человечеству наши исследования!

Сравнив все шесть статей, я осознала, что суммарно в этих экспериментах было отредактировано больше дюжины разных генов. Еще больше радовало разнообразие типов клеток, подвергшихся редактированию. Вдобавок к редактированию генома клеток эмбриональной человеческой почки механизм CRISPR был запрограммирован на то, чтобы разрезать ДНК в клетках человека, пораженных лейкемией, стволовых клетках человека, клетках нейробластомы мыши, бактериальных клетках и даже одноклеточных эмбрионах данио-рерио, популярного модельного организма для генетических исследований. CRISPR не просто демонстрировал отдельные признаки успешного применения; он показывал невероятную гибкость в использовании. Казалось, что любой ген можно сделать мишенью CRISPR, разрезать его и отредактировать, если в клетке присутствует белок Cas9, а направляющая РНК имеет участок, комплементарный двадцатибуквенному коду ДНК.

Ажиотаж вокруг CRISPR усилился в мае, когда лаборатория Рудольфа Йениша в МТИ сообщила о создании мышей с геномом, отредактированным с помощью CRISPR[83]. Всего шестью годами ранее Нобелевскую премию по физиологии или медицине присудили нескольким ученым за разработку методов внедрения изменений в геном мышей – наиболее популярных модельных животных в изучении генетики млекопитающих. Более двадцати лет этот эффективный, но трудоемкий метод был наилучшим – и фактически единственным – способом воспроизведения в организмах мышей мутаций, вызывающих рак или другие болезни у человека. В 1974-м Йениш стал первым, кто создал трансгенную мышь, чьи клетки содержали чужеродный генетический материал, а пятнадцатью годами спустя он вновь вызвал сенсацию, одним из первых применив этот метод, удостоенный Нобелевской премии. А сейчас успех Йениша с CRISPR привлек внимание к новой технологии, которая не просто вытеснила старый подход, но и давала возможность без сучка и задоринки редактировать геномы других животных.