Книги

Трещина в мироздании

22
18
20
22
24
26
28
30

В дальнейшем Мартин показал, что обе нити ДНК разрезаются белком Cas9 в одном и том же месте относительно РНК CRISPR. Что важно, РНК CRISPR и молекулы трансактивационной РНК оставались неизменными на протяжении эксперимента и потому могли быть использованы белком Cas9 повторно для определения последовательности ДНК, подлежащей разрезанию.

Проанализировав эти результаты, мы поняли, что у нас есть ключевые компоненты машины, разрезающей ДНК, – механизма, позволяющего S. pyogenes и S. thermophilus (и любой другой бактерии со сходным типом системы CRISPR) не только находить определенные последовательности ДНК фагов, но и уничтожать их. Необходимыми компонентами для разрезания ДНК были фермент Cas9, РНК CRISPR и трансактивационная РНК.

Я ликовала, когда мы получили эти результаты, но при этом меня волновало множество новых вопросов, ответы на которые нам хотелось узнать как можно скорее. Чтобы понять, за счет чего конкретно фермент Cas9 способен разрезать ДНК “по наводке” РНК, нам нужно было определить, какой участок белка обеспечивает его режущую функцию. Чтобы доказать, что разрезание ДНК специфично и требует совпадения между РНК CRISPR и последовательностью ДНК, нам нужно было изменять последовательность ДНК “буква” за “буквой” и показать, что разрезания не происходит, если последовательности РНК и ДНК совпадают не полностью. А чтобы выявить, каким образом работают молекулы РНК CRISPR и трансактивационной РНК, нам предстояло методически убирать разные фрагменты каждой из молекул и определять, без каких из них невозможно обойтись.

Мартин и Кшиштоф работали над решением этих вопросов не покладая рук, и вскоре стала вырисовываться удивительная картина: Cas9 может присоединяться к двойной спирали ДНК, разделять две нити для формирования новой спирали между РНК CRISPR и одной из нитей ДНК, а затем использовать две структуры с нуклеазной активностью, чтобы одновременно разрезать обе нити ДНК, создавая двуцепочечный разрыв. В зависимости от последовательности связанной с ним молекулы РНК Cas9 нацеливается практически на любую произвольную последовательность ДНК и разрезает ее. По сути, молекула РНК CRISPR действует подобно набору GPS-координат, точно наводя Cas9 на нужное место в длинной молекуле ДНК в соответствии с совпадением “букв” РНК CRISPR и ДНК. Это по-настоящему программируемая нуклеаза, которая могла бы нацеливаться на любую произвольную последовательность ДНК, используя все те же правила спаривания оснований – А с Т, Г с Ц и так далее. Для любой двадцатибуквенной последовательности, которую содержит РНК-проводник, Cas9 находит подходящую пару в ДНК и затем разрезает ее.

Функция Cas9 в битве между бактериями и вирусами теперь казалась совершенно объяснимой. Снабженный запасом молекул РНК, взятых из массива CRISPR, в котором были собраны кусочки ДНК фагов, Cas9 можно мгновенно перепрограммировать на разрезание соответствующих участков вирусных геномов. Он оказался совершенным бактериальным оружием: снаряд, который умеет находить вирусы, а потом поражать цель – быстро и с невероятной точностью.

Получив результаты работы Мартина и Кшиштофа, мы были готовы заняться следующим вопросом: если бактерия могла запрограммировать Cas9 на разрезание специфических последовательностей ДНК вирусов, можем ли мы, как и предполагали раньше, запрограммировать Cas9 на разрезание других последовательностей ДНК, не обязательно вирусных? Мы с Мартином были хорошо осведомлены о достижениях в области редактирования генома и о возможных перспективах – а также существенных ограничениях – программируемых нуклеаз на основе ZFN и TALEN. Мы осознавали – и были поражены этим, – что обнаружили систему, на основе которой можно построить самый простой метод редактирования генома из всех, что были открыты и разработаны до сих пор.

Но чтобы превратить эту крошечную молекулярную машину в мощный инструмент редактирования генома, предстояло сделать еще один шаг. К тому времени мы уже разобрали сложный иммунный ответ на простые части, которые можно разделять, изменять и комбинировать по-разному. Более того, тщательно проведя биохимические эксперименты, мы установили молекулярные правила, управляющие функциями этих различных частей. Теперь же мы хотели удостовериться, что можем видоизменять Cas9 и молекулы РНК для нацеливания на любую выбранную последовательность ДНК и для ее уничтожения. Если сможем – значит, CRISPR поистине мощный инструмент.

Процесс программирования машины CRISPR-Cas9 на самом деле состоял из двух этапов: из проработки идеи и собственно эксперимента. Сначала, конечно, идея. Мартин со своей обычной дотошностью методично модифицировал обе молекулы РНК – молекулу РНК CRISPR, отвечающую за наведение на цель, и молекулу трансактивационной РНК, которая удерживает вместе молекулы РНК CRISPR и Cas9 (с тем чтобы определить, каким образом каждая “буква” каждой РНК влияет на ее функции). На основе этой информации мы с Мартином придумали способ слить две молекулы РНК в одну. Если соединить конец одной молекулы с началом другой, то итоговая гибридная РНК – если она вообще окажется работоспособной – поможет нам упростить машину для нарезки ДНК, которую мы программируем: нам не придется добавлять к Cas9 две молекулы РНК – гида (РНК CRISPR) и помощника (трансактивационную РНК). Вместо этого мы сможем использовать фермент в сцепке с единственной молекулой РНК – РНК-гидом, который выполнял бы обе задачи. Снижение сложности системы сильно повысило бы удобство ее применения.

Мы продумали эксперимент в соответствии с этой идеей. Нам нужно было проверить, может ли одна эта гибридная молекула РНК все так же направлять Cas9 к подходящей последовательности ДНК для разрезания последней. Также наш эксперимент должен был показать, действительно ли Cas9 можно запрограммировать на разрезание любой желаемой последовательности ДНК (как мы предполагали), а не только тех последовательностей ДНК фагов, которые были естественным путем отобраны системой CRISPR в ходе эволюции бактерий.

Исходя скорее из удобства, чем какого-либо предпочтения, – мы понимали, что совершили серьезный прорыв, и не хотели откладывать эксперимент из-за того, что под рукой нет подходящего гена, – мы решили использовать ген медузы, кодирующий зеленый флуоресцентный белок (green fluorescent protein, GFP). Этот белок широко используется в лабораториях по всему миру для визуализации клеток и белков в их составе и стал настолько важным биотехнологическим инструментом, что в 2008 году принес группе ученых: Мартину Чалфи, Осаму Симомуре и Роджеру Тсиену – Нобелевскую премию по химии. Мартин Йинек выбрал пять различных последовательностей длиной в двадцать “букв” внутри гена-мишени и затем создал пять гибридных молекул РНК, точно совпадающих с ними. Как только гибридные РНК-гиды были готовы, мы использовали их вместе с Cas9 и ДНК медузы в уже привычном для нас опыте по разрезанию ДНК и стали ждать результатов.

Когда Мартин показал мне результаты эксперимента с GFP на одном из лабораторных компьютеров, рентгенограмма на экране монитора выглядела замечательно. Все ДНК GFP были разрезаны в заданных местах. Каждая гибридная молекула РНК сработала именно так, как нужно, выбрав именно тот участок ДНК медузы, который мы хотели надрезать и в паре с Cas9 разбить ее именно в том месте.

Программируемая нарезка ДНК посредством CRISPR-Cas9

Мы сделали это. За короткое время мы создали и протестировали новую технологию, которая, основываясь на исследованиях белков ZFN и TALEN, давала возможность редактировать геном – любой геном, а не только геномы бактериофагов. Из этой пятой системы вооружения бактерий мы сделали средство для переписывания кода жизни.

В тот вечер, пока я стояла у плиты и готовила ужин, в моей голове танцевали видения этой крошечной машины: Cas9 и его направляющая РНК, снующие по бактериальной клетке, охотящиеся на комплементарные последовательности ДНК. Внезапно я осознала, что громко смеюсь. Как же невероятно, что эта бактерия нашла способ запрограммировать для себя белок, сделав из него воина для поиска и уничтожения вирусной ДНК! И как же здорово, какое это фантастическое везение, что мы смогли приспособить этот фундаментальный механизм для совершенно других нужд. Это было удивительное время чистого наслаждения, наслаждения от открытия – такого же чувства, какое я испытала в лаборатории доктора Хеммеса много лет назад.

В июне 2012 года Эммануэль и Кшиштоф прилетели в Беркли на конференцию, благодаря чему у нас с Мартином появился шанс снова увидеться с ними лично. Учитывая, какой путь мы проделали вместе как ученые, было удивительно, что наше общение до того момента было почти полностью виртуальным. После бесчисленных телефонных звонков, бесед по скайпу и обмена электронными письмами мы все сидели в моем кабинете в Беркли, поражаясь результатам нашего недолгого, но интенсивного сотрудничества.

Эммануэль и Кшиштоф прибыли в Калифорнию на пятую ежегодную конференцию, посвященную CRISPR, – мероприятие, которое в 2012 году собрало исследователей из двадцати – тридцати лабораторий. Большинство этих ученых специализировались на науке о продуктах питания и микробиологии. CRISPR пока что еще не привлекал особенного внимания более широкого научного сообщества; за предшествующее десятилетие было опубликовано лишь около двухсот научных статей с упоминанием этой системы. Но мы знали, что скоро все изменится.

Время конференции не могло быть выбрано лучше – или хуже. С одной стороны, мы могли сравнить нашу работу с работами коллег. С другой стороны, предшествующие несколько недель были невероятно, до исступления бурными, и все мы хотели отдохнуть.

После эксперимента с GFP мы решили завершить проект как можно быстрее и опубликовать научную статью по его итогам. Еще до того, как Мартин и Кшиштоф закончили свои опыты, а наши зарубежные коллабораторы стали готовиться к поездке в Беркли, мы с Эммануэль начали писать ее.

Главной темой статьи было объяснение механизма работы CRISPR для противовирусной защиты у S. pyogenes, но мы также хотели отметить некоторые важные следствия из наших результатов. В аннотацию к статье мы включили упоминание того, что программируемый фермент, разрезающий ДНК, может быть использован для редактирования генома. Вдобавок мы завершили статью коротким, но значимым очерком возможных областей применения CRISPR не только в бактериях, но и в других типах клеток. Упомянув ZFN и TALEN, мы в заключение написали следующее:

Мы предлагаем альтернативный метод, основанный на программируемом с помощью РНК ферменте Cas9, который может представлять значительный потенциал для применения в сферах направленного воздействия на гены и редактирования генома[78].