Выигрывать 29 и 30 дней в месяц совершенно немыслимо; 28 выигрышных дней имеют вероятность одну миллионную долю; выигрывать 27 дней в месяц можно с шансом одна стотысячная; 26 дней — одна пятнадцатитысячная; 25 дней — одна трехтысячная и 24 выигрышных дня осуществляются с вероятностью в одну тысячную. Лишь это число может внушить мне доверие к автору упомянутого мемуара. Что же касается случая, когда число «красных» дней по крайней мере в два раза больше «черных» (двадцать и десять), то это уже вполне реальная вещь, ибо соответствующая вероятность равна одной десятой. Тот, кто играет всю свою жизнь, переживал такие счастливые месяцы, но… не надо забывать, что ему пришлось претерпеть такое же число несчастливых месяцев.
Игроки в рулетку (или в другие игры, где ни расчет, ни психологический анализ «не работают») могут быть поделены на два семейства. Одни играют как попало или по приметам. Скажем, сегодня двадцать третье число, рассуждает такой игрок, это день рождения моей невесты, значит, число двадцать три принесет мне счастье. Или, думает другой, среди игроков есть некто, которому сегодня дико везет, — играю как он. И так далее до бесконечности.
Другая группа игроков пытается уловить систему. Разумеется, в этом деле никакой системы нет и быть не может. Такова уж природа случая. И тем не менее я нисколько не сомневаюсь, что по мере роста серии
Абсурдность этого рассуждения очевидна. Оно противоречит очень простой мысли: у рулетки нет памяти, рулетка не знает, что было раньше, и перед каждым броском шарик все прошлое стирает. А если так, то перед каждым броском (даже и таким, который следует после двадцати «красных») вероятность «черного» и «красного» одинакова.
Правильно? Вы не находите аргументов против этого простого рассуждения? Да их и нет.
— Позвольте, — вмешивается читатель, которого назовем рассеянным, — вы же сами писали, что длинные серии бывают редко. И чем они длиннее, тем реже выпадают.
— Ну и что же? — поддерживает автора читатель внимательный. — Это не имеет ни малейшего отношения к утверждению, что у рулетки отсутствует память.
— То есть как не имеет? — сердится рассеянный читатель. — Пять «красных» бывает реже, чем четыре, а шесть реже, чем пять. Значит, если я ставлю на «черное» после того, как «красное» вышло четыре раза подряд, я и следую теории вероятностей, которую автор пытается нам втолковать.
— Нет, не следуете. Серий из пяти «красных» ровно столько же, сколько из четырех «красных» подряд и одного «черного»:
— Как так?! Ведь автор говорил пять «красных» бывает реже, чем четыре «красных»?
— Нет, мой дорогой, автор говорил не так. Из пяти игр появление «красного» цвета пять раз реже, чем появление четыре раза «красного» из пяти в любом порядке. Вы лучше вернитесь к табличке на странице 16.
Рассеянный читатель с недовольным видом листает книгу.
— Нашли? Вы видите,
— Так я же прав!
— Ничего вы не правы. Вариант-то
— ?!!!
— Начинаете понимать? Вот в том-то и дело. Конечно, чем одноцветная серия длиннее, тем она реже встречается. Но серия в десять «красных» имеет ту же вероятность, что девять «красных» подряд с завершением на «черном» цвете. Серия в двадцать «красных» будет встречаться столько же раз, сколько серия из девятнадцати «красных» и двадцатого «черного». И так далее.
— Я, кажется, действительно понял. Как странно! На чем же тогда основывается это столь распространенное заблуждение?
— Ну это уже область психологии, — удовлетворенно улыбается внимательный читатель. — Но, мне кажется, дело здесь в том, что у игрока создается впечатление, что появление длинных серий нарушает равновесие «красного» и «черного», и рулетка должна немедленно рассчитаться за нарушение этого равновесия. А то, что такая расплата означает наличие сознания у рулетки, игроков не волнует.
Поблагодарив внимательного читателя, последуем дальше.