Из сказанного следует, что вмешательство, даже самое маленькое, случайности уже делает единичное событие, строго говоря, непредсказуемым, а всю область явлений позволяет зачислить по ведомству проблемы вероятности. К этому важному заключению мы еще вернемся, когда вместо карт, рулетки и бегов займемся поведением молекул.
Закон, найденный Бернулли
Вероятность того, что при случайном броске монета ляжет гербом кверху, равняется 1/2. Значит, зная вероятность события, мы можем предсказать, что при стократном бросании монеты герб появится 50 раз? Не обязательно точно 50. Но что-нибудь около этого непременно.
Предсказания, использующие знание вероятности события, носят приблизительный характер, если число событий невелико. Однако эти предсказания становятся тем точнее, чем длиннее серия событий.
Заслуга этого открытия принадлежит Якову Бернулли (1654–1705). Он был замечательным исследователем. Конечно, и Галилей, и Паскаль, и другие мыслители, которые вводили вероятность как дробь, равную отношению благоприятных случаев к общему числу возможных вариантов, превосходно понимали, что на опыте предсказания комбинаторных подсчетов осуществляются приблизительно. Им было ясно, что число бросков, при которых монета ляжет гербом кверху, не равно в точности, а лишь близко к половине от общего числа бросков, а число бросков кубика, приводящих к шестерке сверху, не равно в точности, а лишь близко к 1/6 от общего числа бросков. Но насколько близко, сказать они не могли. На этот вопрос ответ дал Яков Бернулли. Открытый им закон, который мы называем «законом больших чисел», лежит в основе статистической физики; без этого закона не могут обойтись статистики ни одной области знания.
Сущность этого закона весьма проста.
Положим, «честная» монета бросалась тысячу раз, потом еще тысячу раз, потом еще… И так много раз. Разумеется, герб редко появится ровно 500 раз. Будут серии, где отношение числа появляющихся гербов к 1000 будет совсем близко к 1/2, и такие серии, где отклонение будет довольно значительным. Каким закономерностям подчиняется это отклонение от теоретической вероятности? И — самое главное — как будет меняться отклонение от вычисленной вероятности с увеличением числа бросков?
Яков Бернулли строго доказал, что разности отношения удачных бросков к общему числу бросков и теоретического числа вероятности (в нашем примере — отклонения от 1/2) уменьшаются с возрастанием числа бросков, и эти отклонения могут быть сделаны меньше любого малого, наперед заданного числа.
Отношение числа удачных бросков к общему числу бросков называют «частотой». Закон больших чисел можно сформулировать и так:
Отклонения «частоты» от вероятности при большом числе бросков, измеряемом тысячами, становятся совсем незначительными. О результатах своих немудреных опытов по бросанию монеты поведали миру математики XVIII века. В одном таком опыте герб выпал 2028 раз при общем числе бросков 4000; когда число бросков достигло 12 000, то оказалось, что герб появился 6019 раз; наконец, при числе бросков 24 000 герб выпал 12 012. Частоты при этом изменялись так: 0,507; 0,5016 и 0,5005.
Однако надо ясно представлять себе, что это сближение «частоты» с вероятностью есть лишь общая тенденция. Может случиться, что отклонения от вероятности для меньшего числа опытов окажутся такими же или даже меньшими, как и отклонения при большом числе опытов. Вообще же эти отклонения от предельных законов вероятности носят также статистический характер.
Часть вторая
Дела житейские
Вероятность, которой можно и должно пренебречь
Любители парадоксов часто пытаются убедить читателя в противоречиях, которые якобы часто встречаются в проблемах вероятности.
Парадоксы возникают обычно в том случае, если игрой слов пытаются подменить практическую постановку вопроса. Вот пример.
Капитан пожарной команды собирается провести учения. Разумеется, тревога должна быть неожиданной, и он решает выбрать день учений броском игральной кости: единица — понедельник, двойка — вторник… шестерка — суббота (воскресенье у пожарной команды выходной). Казалось бы, все ясно, и день тревоги будет выбран в соответствии с законами случая. Однако предположим, что проходит понедельник, вторник… наконец, пятница, а тревоги нет. Значит, наверняка она будет в субботу. А такого положения допустить нельзя, ведь случайность изгнана. Значит, выбор дней тревоги с элементом случая надо ограничить пятницей. Но, владея сим методом рассуждения и не дождавшись тревоги в четверг, пожарники будут твердо знать, что ее объявят в пятницу. И тогда дни учений надо ограничить четвергом. Но, не дождавшись тревоги в среду, пожарники будут твердо знать, что произойдет в четверг. Также отпадает и среда, и вторник…
Рассуждение это бессмысленно и вовсе не потому, что в понятии вероятности есть противоречия, а потому, что полностью лишена содержания сама постановка вопроса. Ясно, что в понедельник утром пожарники могут ожидать проверки в любой из 6 дней, а во вторник в любой из 5, а в среду в любой из 4 и так далее. Парадокс, как всегда, результат игры слов и отрыва слов от действий.
Обращаясь к математику, прошу его написать подряд десять случайных цифр. Он, хитро улыбаясь, пишет подряд десять единиц, а я изображаю на своем лице недоумение. Математик снисходительно поясняет: «Я десять раз подряд бросил монету. Она десять раз упала цифрой кверху. Я обозначил единицей выпадение цифры, и вот вам результат моего опыта. Вы ведь не станете отрицать, что это явление случайное, и также ясно представляете себе, что подобное событие (то есть выпадение цифры 10 раз подряд) вполне возможно — его вероятность около одной тысячной? А с такой вероятностью следует считаться».
Все правильно. Только не следует делать из этого вывод, что в понятии «вероятность» заключены какие-то противоречия и неясности.