Сколько нейронов в мозге
Поиск ответа на этот вопрос в учебниках по нейробиологии даёт разные цифры. Обычная цифра – 100 миллиардов нейронов, и в 10 раз больше глиальных клеток – обслуживающего персонала нейронов. 1:10. Бразильская исследовательница Сюзанна Геркулано-Гаузель (Suzana Herculano‐Houzel) не поверила и решила узнать точное число. Она перечитала массу учебников, встретилась с известными нейробиологами. Все повторяли как мантру число 100 миллиардов, но никто не мог сказать, откуда взялась эта цифра. Тогда Геркулано-Гаузель решила посчитать нейроны сама. Она разработала новый метод и назвала его
В 2009 году Геркулано-Гаузель взяла мозг четырех умерших людей. Она разделила его на части – кора, мозжечок и другие, затем нарезала их кружочками. Потом растёрла их в порошок и развела в специальном растворе, чтобы удалить жиры. В растворе остались только ядра нейронов и глиальных клеток. Затем исследовательница пометила их флуоресцентным протеином. В ультрафиолетовых лучах они светились голубым. Одно ядро – одна клетка. Чтобы определить, сколько из них нейронов, Сюзанна использовала два антитела, которые приклеиваются только к нейронным ядрам и окрашивают их в красный цвет. С помощью микроскопа она посчитала сначала голубые ядра, а затем красные. Результат – в мозге 170 миллиардов клеток, из них 86 миллиардов нейронов и 86 миллиардов глиальных клеток. Соотношение один к одному. Но не для всех частей мозга. В коре – верхнем слое мозга, самом богатом нейронами, – почти 61 миллиард глиальных клеток и 16 миллиардов нейронов – 3,76: 1[11].
Критики упрекали Сюзанну Геркулано-Гаузель в том, что растирание в порошок и растворение разрушило много клеток. Но она использовала раствор, который разрушает жиры и сохраняет протеины, из которых состоят ядра клеток. А то, что ткани перед растиранием хранились в формалине, только укрепило связи между протеинами.
Законы мозга
Нейроны, которые расположены рядом, обрабатывают один тип информации – визуальную, слуховую, двигательную. Учёные называют такие зоны соответственно зрительной, слуховой или двигательной корой. Информация из разных типов коры может смешиваться, неважно, находятся они по соседству или далеко друг от друга. Когда мы видим розу и сразу слышим слово
Собака Павлова, слыша звонок, понимает, что скоро обед, и выделяет слюну. Так работает ассоциативное обучение или условный рефлекс. Считается, что язык дети выучивают таким же образом. Но тут есть одна проблема. Допустим, малыш слышит слово
Фридеман Пульвермюллер (Friedemann Pulvermüller) – доктор наук, профессор Свободного университета Берлина, руководитель лаборатории Мозга и языка (Brain Language Laboratory). Его интересуют нейробиологические основы языка. Профессор Пульвермюллер разработал модель обработки языка, в центре внимания которой находятся нейроны – Action perception theory. Модель выявляет нейронные сети, которые обрабатывают слова, грамматические правила, функции слов и языковых конструкций в контекстах. Профессор Пульвермюллер разрабатывает новые методы языковой терапии после инсульта. 12 лет он руководил программой в области когнитивной нейронауки языка в отделении медицинских исследований и наук о мозге (the Medical Research Cognition and Brain Sciences Unit) в Кембридже (Великобритания)[13].
Нейронные ансамбли или нейроны-одиночки
Восьми страдающим эпилепсией пациентам для лечения имплантировали электроды в мозг. Чтобы проверить, как их мозг обрабатывает зрительные сигналы, им показывали фотографии известных людей, животных, предметов и зданий. Когда одному из них показали фото Дженнифер Энистон, внезапно загорелся один нейрон в средней части височной доли. И только в том случае, если она была на фото одна! Если, например, вместе с Брэдом Питтом – никакой реакции. В другом похожем эксперименте уже другому пациенту показывали фотографии Холли Берри. Нейрон загорался, даже когда она была в образе женщины-кошки и даже просто при виде надписи
Всего учёные проверили 132 нейрона, из которых 51 реагировал только на определённый стимул – человека, животное, предмет. Это исследование интерпретировали так, что специфическая информация может кодироваться малым числом нейронов. Вероятность случайно встретить такие нейроны в мозге ничтожно мала.
Неужели нейроны работают поодиночке, а не в ансамблях? Если это предположение верно, тогда нам нужно в коре больше нейронов, чем 16 миллиардов – чтобы закодировать для всех возможные предметы в разных вариантах.
Учёные продолжили свои исследования и обнаружили, что один нейрон реагировал на двух разных баскетболистов, один нейрон – на изображения как Люка Скайуокера, так и Йоды. Возможно, нейрон реагирует на нечто общее между изображениями. Например, на баскетбол или на «Звёздные войны». Другой вопрос, который задали себе учёные: сколько нейронов реагирует на один стимул, и наоборот, на сколько стимулов реагирует один нейрон? Ответ: на стимул реагирует менее нескольких миллионов нейронов, и каждый из них может выстрелить на несколько десятков картинок[14]. Один нейрон в разное время играет в разных ансамблях.
Зоны мозга, необходимые для речи
В конце XIX века немецкого нейроанатома и психиатра Корбиниана Бродмана заинтересовала структура мозга, а точнее коры. С воодушевлением он принялся за составление карты головного мозга человека. Он заметил, что в одних зонах слоистая структура коры более явно выражена, чем в других. Почти 10 лет он нарезал мозги людей, собак, кошек, тюленей и других животных на тончайшие – не больше 10 микрометров – срезы (иначе не разглядеть нейроны!), стабилизировал и химически их окрашивал. Затем фотографировал под микроскопом и анализировал. Какой титанический труд!
Бродман выделил в мозге человека 52 зоны, которые различаются размером нейронов, их формой и плотностью укладки в коре. А описал 43 из них. Научное сообщество настолько поразили точность, аккуратность и обстоятельность работы, что зоны получили его имя – поля Бродмана.
Позже учёные уточняли и дорабатывали карту Бродмана. Сегодня уже существуют цифровые трёхмерные атласы мозга, известно, что в некоторых отделах мозга полей больше, чем описал Бродман. Несмотря на это, многие учёные до сих пор пользуются его картой.
Все важные для языка зоны расположены в районе Сильвиевой борозды. Она отделяет височную долю от лобной и теменной долей. Поле Бродмана (ПБ) 41 обрабатывает акустические сигналы из ушей, поля 1–3 – сигналы о положении органов артикуляции. ПБ 4 – отправляет сигналы к мускулам, в том числе и к органам речи. Центр Брока состоит из двух полей Бродмана – 44 и 45. Центр понимания речи Вернике – это поле 22, сюда поступают сигналы из слуховой коры после того, как она опознает речь. В ПБ 17 обрабатываются сигналы от глаз при чтении.