Как ни досадно, результаты недавних исследований подтвердили правоту моей мамы: мне следовало больше заниматься на пианино. На самом деле совершенство любого моторного навыка зависит от времени, потраченного на его отработку. Практика не только меняет эффективность синапсов{19} – недавно было показано{20}, что синаптические связи у мыши быстро реагируют на обучение моторным навыкам и устойчиво меняются. Когда мышь одного месяца от роду обучали протягивать переднюю лапу, у нее быстро (в течение часа!) формировались дендритные шипики. После дрессировки суммарная плотность шипиков возвращалась к исходному уровню за счет ликвидации некоторых старых шипиков и стабилизации новых, сформировавшихся во время обучения. Те же исследователи показали, что различные моторные навыки кодируются различными наборами синапсов. Хорошая новость заключается в том, что мне (или, по крайней мере, мышке) еще не поздно внять совету матери. При освоении новой задачи взрослыми у них также формируются новые дендритные шипики. Плохая же новость в том, что мне все равно придется много практиковаться. Похоже, усвоение двигательных навыков – результат настоящей реорганизации синапсов, а стабилизировавшиеся в итоге нейронные связи, вероятно, становятся основой долговременной моторной памяти.
Ассоциативное обучение – другой пример того, как опыт может влиять на нейронные связи. Если вы видели фильм “Фаворит”, то, должно быть, помните, как коня по кличке Сухарь переучивали трогаться с места – начинать бежать при звуке колокола. Когда звонил колокол, коня сильно ударяли стеком по боку. Это вызывало у него реакцию бегства, так что он начинал двигаться. После нескольких повторений он срывался с места уже от одного только звука колокола. В конце концов он победил прежнего чемпиона Восточного побережья – скакуна по кличке Адмирал Войны.
Итак, хотя в целом связи нейронных сетей контролируются генетически, внешние стимулы окружающей среды и обучение также влияют на рост нейронов и их взаимосвязи. Согласно современным представлениям о мозге, его крупномасштабный план обусловлен генетически, а вот специфические связи на локальном уровне зависят от активности, а также от эпигенетических факторов и опыта. Важны как наследственность, так и среда, что подтвердит вам любой наблюдательный родитель или хозяин домашних животных.
Психология развития человека изобилует примерами, показывающими, что маленькие дети интуитивно знают кое-что из области физики, биологии и психологии. На протяжении многих лет Элизабет Спелк в Гарвардском университете и Рене Байяржон в Иллинойском университете исследовали, что малыши знают о физике. Взрослые принимают такое знание как само собой разумеющееся и редко задаются вопросом о его происхождении. Скажем, кофейная чашка на столе при обычных обстоятельствах не вызовет у вас особого интереса. Однако если она вдруг поднимется к потолку, то всерьез привлечет ваше внимание – вы не сможете оторвать от нее глаз. Ведь получится, что она нарушает закон притяжения! Вы молчаливо полагаете, что предметы подчиняются ряду правил, а если они перестают это делать – таращитесь на них. И вы бы вперили взгляд в эту чашку, даже если бы никогда не изучали закон притяжения в школе. То же самое относится и к маленькому ребенку. Если его бутылочка внезапно взлетит к потолку, она завладеет его вниманием.
Итак, маленькие дети дольше смотрят на предметы, которые ведут себя странно с точки зрения некоего набора правил. Исследователи захотели выяснить, что же это за правила для ребенка. Байяржон помещала мячик перед младенцами трех с половиной месяцев от роду, а затем закрывала его экраном. Потом она незаметно убирала игрушку. Когда экран отодвигали, а мячика за ним не оказывалось, малыши поражались. Значит, они, по-видимому, уже кое-что усвоили из законов физики: один твердый предмет не может пройти сквозь другой. К трем с половиной месяцам младенцы уже считают, что предметы не изменяются и уж точно не исчезают, скрываясь из виду{21}. Как показали другие эксперименты, маленькие дети ожидают, что предмет сохранит свою целостность, а не распадется на части, если его за что-то дернуть. Они также рассчитывают, что объект, который исчез за экраном, сохранит свою форму, когда появится снова: мячик не должен превратиться в плюшевого мишку. Они полагают, что предметы движутся вдоль непрерывных траекторий, а не скачут через разрывы в пространстве, и догадываются о форме частично спрятанного предмета по его видимой части: полусфера, когда ее полностью откроют, должна оказаться мячиком, у которого не должно быть, например, ног. Малыши также считают, что предметы не двигаются сами по себе, пока что-то их не коснется, и что они твердые и не могут проходить сквозь другие предметы{22}. Это знание, которое определяется генетически и с которым мы рождаемся. Но почему мы вправе утверждать, что это не выученное знание? По той причине, что младенцы по всему миру обладают одинаковыми знаниями в одном и том же возрасте независимо от того, в какой среде живут.
Предсуществующая сложность, вероятно, встроена также и в зрительную систему человека. На уровне восприятия у нас работает множество встроенных автоматических процессов. Скажем, мы далеко не всегда видим то, что в действительности находится у нас перед глазами. Давно известно, что два абсолютно одинаковых круга кажутся разными по яркости, если у каждого из них свой фон. Серый круг на темном фоне кажется нам более светлым, чем точно такая же фигура на фоне посветлее.
Освещенность объекта, строго говоря, определяется падающим на него светом, тем, который отражается от его поверхности, и прозрачностью среды (например, ее уменьшает туман или фильтр, через который мы смотрим) между наблюдателем и объектом. Световая величина, непосредственно воспринимаемая глазом, называется яркостью. Однако соответствие между освещенностью объекта и его воспринимаемой яркостью не такое простое. Если меняется хотя бы один из трех параметров, относительная интенсивность света, достигающего глаза, может как измениться, так и остаться прежней в зависимости от сочетанного влияния данных параметров. Приведу пример. Окиньте взглядом четыре стены комнаты, в которой вы находитесь. Даже если все они одного цвета, одна стена может казаться ярче другой в зависимости от того, как обе освещены. Если стены белые, то одна из них может казаться ярко-белой, другая светло-серой, а третья темно-серой. Войдите в эту же комнату позже, при другом освещении, – вероятно, изменится и яркость стен. Таким образом, между источником визуальных стимулов и теми элементами, комбинация которых порождает эти стимулы, нет четкой взаимосвязи. Зрительная система не способна догадаться, как эти факторы сложились вместе и создали уровень яркости определенного предмета, свет от которого достигает сетчатки.
Как такая система возникла? Исследователи Дейл Первис, Бью Лотто и их коллеги из Университета Дьюка показали, что поведение эффективно, только когда реакции соответствуют источнику стимула, а не измеримым параметрам самого стимула. А это достигается только благодаря прошлому опыту – как индивидуальному, так и эволюционному{23}. Например, умение оценивать яркость зрелого плода, висящего на фоне листвы, давало больше преимущества, чем способность различать конкретные оптические параметры. Иными словами, ученые предположили, что визуальная цепочка и итоговое восприятие были отобраны такими, какие они есть, в силу того, что зрительно-опосредованное поведение в прошлом оказывалось эффективным. “Если эта идея справедлива, значит, в тех случаях, когда стимул соответствует одинаково отражающим поверхностям, расположенным под одним источником света, яркость объектов будет казаться одинаковой. Однако, если стимул согласуется с прошлым опытом зрительной системы, имеющим отношение к объектам разной отражательной способности при разном освещении, яркость объектов будет казаться неодинаковой”{24}. Суть в том, что мы этого не осознаем. Наша система зрительного восприятия развивалась в процессе отбора, чтобы иметь такие сложные автоматические механизмы уже встроенными.
Путь к
Палеоантропологи установили, что у современного человека и у шимпанзе был общий предок, который жил 5-7 миллионов лет назад. По какой-то причине (часто это связывают с переменой климата, которая повлекла за собой изменение пищевых ресурсов) наша общая с шимпанзе линия разделилась. После нескольких фальстартов и неудачных ответвлений одна линия в конце концов привела к шимпанзе (
Одна найденная окаменелость гоминид вызвала изрядный ажиотаж. В 1974 году Дональд Йохансон взбудоражил мир антропологов: обнаружил первые, возрастом около 4 миллионов лет, ископаемые останки существа, которое стало известным как
Один из теоретиков, психолог Леон Фестингер, интересовался происхождением современных людей и задавался вопросом, кого из наших предков можно назвать первым человеком. Он указал на то, что прямохождение должно было стать “почти катастрофическим недостатком”{26}, поскольку сильно снижало скорость передвижения как при беге, так и при лазании. Кроме того, четвероногое животное способно неплохо передвигаться и на трех лапах, если одна повреждена, а двуногое на одной – нет. Несомненно, этот недостаток сделал прямоходящих более уязвимыми для хищников.
Становление прямохождения принесло еще одно неудобство: родовой канал стал уже. Более широкий таз сделал бы хождение на двух ногах невозможным с механической точки зрения. В период эмбрионального развития череп приматов формируется не полностью, составляющие его кости окончательно срастаются уже после рождения. Это делает череп достаточно мягким, чтобы пройти по родовому каналу, а также позволяет мозгу расти после рождения. При рождении человеческого младенца его мозг примерно в три раза больше мозга новорожденного шимпанзе, но зато менее развит. По сравнению с другими приматами мы рождаемся как бы преждевременно – на один год раньше. И это тоже недостаток: человеческие младенцы беспомощны и требуют заботы в течение более продолжительного времени. После рождения развитие мозга у человека и у шимпанзе существенно различается. Мозг ребенка продолжает расти до подросткового возраста включительно и становится в три раза больше, всесторонне совершенствуясь и испытывая различные воздействия в этот пластичный период. В результате его масса достигает 1,3 килограмма. А мозг детеныша шимпанзе практически полностью развит при рождении и прекращает расти, достигнув массы в 400 граммов.
Прямохождение должно было иметь определенное преимущество, которое позволило нашим предкам выжить и успешно размножиться. По мнению Фестингера, преимущество гоминид заключалось не в том, что они обрели две конечности, которые могли использовать не для передвижения, а в иных целях, а в том, что у них появился мозг, достаточно изобретательный, чтобы придумать, какие же цели это могут быть: “Руки и кисти не были (как и сейчас) такими специализированными конечностями, как, например, ноги человека. Было изобретено безграничное разнообразие вариантов использования рук и кистей – и слово ‘изобретено’ тут ключевое”. Оуэн Лавджой, размышляя об останках
Снизившаяся скорость перемещения и возросшая опасность стать жертвой хищника, хотя и кажутся недостатками, могли подстегнуть многие когнитивные изменения. Новый изобретательный мозг должен был прежде всего решить проблему защиты от хищников (вспомним поговорку “Нужда – мать изобретения”). Хищника можно перехитрить двумя способами. Во-первых, оказаться больше и быстрее его – непригодный вариант для гоминид. Во-вторых, жить большими группами, не только повышая выживаемость и безопасность, но также делая охоту и собирательство более эффективными. На протяжении многих лет высказывалась масса идей о том, какие силы обеспечивали неустанное увеличение объема мозга гоминид. Сейчас, похоже, все они свелись к двум факторам, управляющим процессами естественного и полового отбора: пищевому рациону, который давал лишние калории, необходимые для того, чтобы снабжать метаболически затратный больший мозг, и социальным вызовам, возникающим из-за необходимости жить большими группами ради безопасности.
Объясняются ли наши отличия от других животных тем, что наш мозг больше?
Еще Чарльз Дарвин говорил о том, что способности человека объясняются просто бо́льшим объемом мозга: “Как бы ни было велико умственное различие между человеком и высшими животными, оно только количественное, а не качественное”{28}. Его сторонник и защитник нейроанатом Томас Генри Хаксли также отрицал, что мозг человека обладает какими-либо уникальными свойствами, кроме размера{29}. Идея, согласно которой единственное различие мозга человека и приматов, наших ближайших родственников, – размер, не вызывала сомнений до 1960-х годов. А затем Ральф Холлоуэй, ныне профессор антропологии Колумбийского университета, бросил вызов этому представлению. Он предположил, что эволюционные изменения когнитивных способностей стали результатом реорганизации мозга, а не просто изменения его размера{30}. “Я пришел к такому выводу, – пишет он, – еще до семинара в 1964 году, на котором ‹…› я показал, что в некоторых случаях микроцефалии у людей, когда размеры мозга показались бы до смешного малыми даже горилле, человек тем не менее способен говорить. По моему мнению, это доказывало, что мозг таких пациентов организован как-то по-другому – отлично от человекообразных обезьян”{31}. Наконец, в 1999 году Тодд Пройсс и его коллеги сумели подтвердить теорию Холлоуэя – выявили различия в организации мозга человека и обезьян на микроскопическом уровне{32}.
Далее идеи Холлоуэя поддержали эволюционные биологи Виллем де Винтер и Чарльз Окснард. Они предположили, что размер части мозга зависит от ее функциональных отношений с другими частями. Проведя мультивариантный анализ (при котором рассматривается одновременно более одной переменной) соотношений между размерами частей мозга у 363 биологических видов, они обнаружили, что группы видов с близкими соотношениями связаны друг с другом похожим образом жизни (передвижения, добыча продовольствия и пищевой рацион), а не филогенетическими (эволюционными) отношениями. Так, например, насекомоядные летучие мыши Нового Света оказались ближе к плотоядным летучим мышам Старого Света, чем к филогенетически более близким родственникам – плодоядным летучим мышам Нового Света. Анализ де Винтера и Окснарда выявил, что виды с похожим образом жизни имеют сходную организацию мозга, то есть что конвергенция и параллели в строении мозга, вероятнее всего, объясняются конвергенцией и параллелями в отношении
Неудивительно, что Дарвин постулировал только количественную разницу. Хотя каждый биологический вид уникален, все они состоят из одних и тех же молекулярных и клеточных “кирпичиков” и возникли под действием одинаковых принципов естественного отбора. Многое, что ранее считалось присущим исключительно человеку, как оказалось, существовало и до него. И все же Паско Ракич, нейроанатом из Йельского университета, в качестве предостережения, которое мы услышим еще и от других ученых, говорит: “Все мы настолько увлеклись необычайными сходствами в организации коры головного мозга внутри одного биологического вида и между разными видами, что забываем – отличия там, где следует искать эволюционный прогресс, который привел к взлету наших когнитивных способностей”{35}.
Споры о том, чем человеческий мозг отличается от мозга других животных (да и вообще о различиях мозга разных животных), количественный ли характер носят эти различия или качественный, продолжаются, но доказательства, что это действительно качественные различия, различия по сути, гораздо более убедительные. Великий психолог Дэвид Примак, много лет пытавшийся обучить шимпанзе языку, согласен с Ракичем: “Демонстрация сходства между способностями животных и человека должна автоматически вызывать следующий вопрос: а в чем отличия? Это предотвратит ситуацию, когда сходство ошибочно принимают за равенство”{36}.